OUTLINE

The RS5C321A/B are CMOS type real-time clock ICs which are connected to the CPU via three signal lines and capable of serial transmission of clock and calendar data to the CPU. The RS5C321A/B can generate 32.768kHz clock pulse controlled by register. Driving an oscillation circuit at constant voltage, the circuit presents less fluctuations in frequency and current consumption thanks to its minimal voltage fluctuations consequently realizes low current consumption (0.6µA at 3V). It also provides an oscillator halt sensing function for application to data validity at power-on and other occasions. Integrated into an ultra compact and ultra thin 8pin SSOP (0.65mm pitch), the RS5C321A/B are the optimum choice for equipment requiring small size and low power consumption.

The RS5C321A and the RS5C321B reads/writes data at falling and rising edge of serial clock respectively.

FEATURES

- Time keeping voltage 1.6V to 6.0V
- Lowest supply current 0.6µA TYP. (1.5µA MAX.) at 3V
- Connection to the CPU via only three pins: CE, SCLK/SCLK and SIO for addressing and data read/write
- A clock counter (counting hours, minutes, and seconds) and a calendar counter (counting leap years, years, months, days, and days of the week) in BCD code
- 32.768kHz clock pulse controled by register.
- Oscillator halt sensing to judge internal data validity
- Second digit adjustment by ±30 seconds
- 12-hour or 24-hour time display selectable
- Automatic leap year recognition up to the year 2099
- CMOS logic
- Package: 8pin SSOP (0.65mm pitch)
APPLICATIONS

- Communication equipment (multi-function telephone, portable telephone, PHS, pager)
- Business machines (facsimile, portable facsimile)
- Personal computer (desktop type, notebook type, word processor, PDA, electronic notebook, TV games)
- Audio visual equipment (portable audio equipment, video camera, camera, digital camera, remote control equipment)
- Home use (rice cooker, microwave range)

PIN CONFIGURATION

- 8pin SSOP (0.65mm pitch)

BLOCK DIAGRAM

Discontinued
PIN DESCRIPTIONS

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Symbol</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CE</td>
<td>Chip enable input</td>
<td>The CE pin is used to interface the CPU and is accessible when held at the high level. This pin is connected to a pull-down resistor. It should be switched to the low level or opened when not accessed or when powering off the system.</td>
</tr>
<tr>
<td>2</td>
<td>SCLK (RS5C321A)</td>
<td>Serial clock input</td>
<td>This pin is used to input shift clock pulses to synchronize data input to, and output from, the SIO pin. SCLK and SCLK are for writing data at falling and rising edge of clock pulses respectively and also reading data at rising and falling edge of clock pulses respectively.</td>
</tr>
<tr>
<td></td>
<td>SCLK (RS5C321B)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SIO</td>
<td>Serial input/output</td>
<td>The SIO pin inputs and outputs written or read data in synchronization with shift clock pulses from the SCLK/SCLK pin. The SIO pin causes high impedance when CE pin is held at the low level (CMOS input/output). After the CE pin is switched to the high level and the control bits and the address bits are input from the SIO, the SIO pin performs serial input and output operations.</td>
</tr>
<tr>
<td>4</td>
<td>VDD</td>
<td>Positive/Negative power supply input</td>
<td>The VDD pin and VSS pin are connected to the positive power supply and to the ground level respectively.</td>
</tr>
<tr>
<td>5</td>
<td>32KOUT</td>
<td>32.768kHz clock output</td>
<td>The 32KOUT pin outputs 32.768kHz clock pulses when activated. This pin functions as an Nch open drain output.</td>
</tr>
<tr>
<td>6</td>
<td>OSCIN</td>
<td>Oscillator circuit input/output</td>
<td>These pins configure an oscillator circuit by connecting a 32.768kHz crystal oscillator between the OSCIN and OSCOUT pins and by connecting a capacitor between the OSCIN and VSS pins. (Any other oscillator circuit components are built into the RS5C321A/B.)</td>
</tr>
<tr>
<td>7</td>
<td>OSCOUT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Conditions</th>
<th>Ratings</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>Supply voltage</td>
<td>–0.3 to +7.0</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V<sub>I</sub></td>
<td>Input voltage</td>
<td>–0.3 to VDD+0.3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V<sub>O</sub>1</td>
<td>Output voltage 1</td>
<td>SIO</td>
<td>–0.3 to VDD+0.3</td>
<td>V</td>
</tr>
<tr>
<td>V<sub>O</sub>2</td>
<td>Output voltage 2</td>
<td>32KOUT</td>
<td>–0.3 to +12</td>
<td>V</td>
</tr>
<tr>
<td>P<sub>D</sub></td>
<td>Power dissipation</td>
<td>Topt=25°C</td>
<td>300</td>
<td>mW</td>
</tr>
<tr>
<td>T<sub>opt</sub></td>
<td>Operating temperature</td>
<td></td>
<td>–40 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>T<sub>stg</sub></td>
<td>Storage temperature</td>
<td></td>
<td>–55 to +125</td>
<td>°C</td>
</tr>
</tbody>
</table>

Absolute Maximum ratings are threshold limit values that must not be exceeded even for an instant under any conditions. Moreover, such values for any two items must not be reached simultaneously. Operation above these absolute maximum ratings may cause degradation or permanent damage to the device. These are stress ratings only and do not necessarily imply functional operation below these limits.

RECOMMENDED OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Conditions</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>Supply voltage</td>
<td></td>
<td>2.5</td>
<td>6.0</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V<sub>CLK</sub></td>
<td>Time keeping voltage</td>
<td></td>
<td>1.6</td>
<td>6.0</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>f<sub>X</sub>T</td>
<td>Oscillation frequency</td>
<td></td>
<td>32.768</td>
<td>kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C<sub>G</sub></td>
<td>External oscillation capacitance</td>
<td>Cl.value of crystal=6 to 8pF</td>
<td>5</td>
<td>10</td>
<td>24</td>
<td>pF</td>
</tr>
<tr>
<td>V<sub>PUP</sub></td>
<td>Pull-up voltage</td>
<td>32KOUT</td>
<td>10</td>
<td></td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

(VSS=0V, Topt=–40 to +85°C)

Discontinued
DC CHARACTERISTICS

Unless otherwise specified: VSS=0V, VDD=3V, Topt=–40 to +85˚C, Oscillation frequency=32,768kHz, (Cl=6pF, R1=30kΩ), Cg=10pF

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Pin name</th>
<th>Conditions</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIH</td>
<td>“H” input voltage</td>
<td>CE, SCLK/SCLK, SIO</td>
<td>0.8VDD</td>
<td>VDD</td>
<td>VDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIL</td>
<td>“L” input voltage</td>
<td>CE, SCLK/SCLK, SIO</td>
<td>0</td>
<td>0.2VDD</td>
<td>VDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOH</td>
<td>“H” output current</td>
<td>SIO</td>
<td>VOH=VDD –0.5V</td>
<td>0.5</td>
<td>–0.5</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>IOL1</td>
<td>“L” output current</td>
<td>SIO</td>
<td>VOL1=0.5V</td>
<td>0.5</td>
<td>0.5</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>IOL2</td>
<td>32KOUT</td>
<td>VOL2=0.4V</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDN</td>
<td>Pull-down resistance</td>
<td>CE</td>
<td>45</td>
<td>150</td>
<td>450</td>
<td>kΩ</td>
<td></td>
</tr>
<tr>
<td>IILK</td>
<td>Input leakage current</td>
<td>SCLK/SCLK</td>
<td>Vi=VDD or VSS</td>
<td>–1</td>
<td>1</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>IOZ1</td>
<td>Output off-state</td>
<td>SIO</td>
<td>Vo=VDD or VSS</td>
<td>–2</td>
<td>2</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>IOZ2</td>
<td>leakage current</td>
<td>32KOUT</td>
<td>Vo=10V</td>
<td>–5</td>
<td>5</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>IDD1</td>
<td>Standby current 1*</td>
<td>VDD</td>
<td>VDD=3V</td>
<td>Input/Output: open</td>
<td>0.6</td>
<td>1.5</td>
<td>μA</td>
</tr>
<tr>
<td>IDD2</td>
<td>Standby current 2*</td>
<td>VDD</td>
<td>VDD=6V</td>
<td>Input/Output: open</td>
<td>0.8</td>
<td>2.0</td>
<td>μA</td>
</tr>
<tr>
<td>CD</td>
<td>Internal oscillation capacitance</td>
<td>OSCOUT</td>
<td></td>
<td></td>
<td>10</td>
<td>pF</td>
<td></td>
</tr>
</tbody>
</table>

(*) IIO1, IIO2 is specified when 32kHz output is off (CLEN=1)

AC CHARACTERISTICS

(VSS=0V, Topt=–40 to +85˚C, Cl=50pF)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>VDD≥4.5V</th>
<th>VDD≥4.0V</th>
<th>VDD≤2.5V</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>tCES</td>
<td>CE set-up time</td>
<td>175</td>
<td>200</td>
<td>400</td>
<td>ns</td>
</tr>
<tr>
<td>tCEH</td>
<td>CE hold time</td>
<td>175</td>
<td>200</td>
<td>400</td>
<td>ns</td>
</tr>
<tr>
<td>tCR</td>
<td>CE inactive time</td>
<td>350</td>
<td>400</td>
<td>800</td>
<td>ns</td>
</tr>
<tr>
<td>tSCK</td>
<td>SCLK clock cycle time</td>
<td>350</td>
<td>400</td>
<td>800</td>
<td>ns</td>
</tr>
<tr>
<td>tCKH</td>
<td>SCLK high time</td>
<td>175</td>
<td>200</td>
<td>400</td>
<td>ns</td>
</tr>
<tr>
<td>tCKL</td>
<td>SCLK low time</td>
<td>175</td>
<td>200</td>
<td>400</td>
<td>ns</td>
</tr>
<tr>
<td>tCKS</td>
<td>SCLK to CE set-up time</td>
<td>60</td>
<td>80</td>
<td>120</td>
<td>ns</td>
</tr>
<tr>
<td>tRE</td>
<td>Data output start time (from rising of SCLK)</td>
<td>120</td>
<td>135</td>
<td>300</td>
<td>ns</td>
</tr>
<tr>
<td>tRR</td>
<td>Data output delay time (from rising of SCLK)</td>
<td>120</td>
<td>135</td>
<td>300</td>
<td>ns</td>
</tr>
<tr>
<td>tRZ</td>
<td>Output floating time</td>
<td>120</td>
<td>135</td>
<td>300</td>
<td>ns</td>
</tr>
<tr>
<td>tDS</td>
<td>Input data set-up time</td>
<td>50</td>
<td>60</td>
<td>120</td>
<td>ns</td>
</tr>
<tr>
<td>tDH</td>
<td>Input data hold time</td>
<td>50</td>
<td>50</td>
<td>80</td>
<td>ns</td>
</tr>
</tbody>
</table>
TIMING CHARTS
Input/Output conditions: $V_{IH}=0.8 \times V_{DD}$, $V_{IL}=0.2 \times V_{DD}$, $V_{OH}=0.8 \times V_{DD}$, $V_{OL}=0.2 \times V_{DD}$

- Any SCLK/SCLK state is allowed in the hatched area.

- **RS5C321A**

- **RS5C321B**
FUNCTIONAL DESCRIPTIONS

1. Addressing

<table>
<thead>
<tr>
<th>Address</th>
<th>Registers</th>
<th>Data *1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3 A2 A1 A0</td>
<td>1-second counter (BANK=0)</td>
<td>D3 D2 D1 D0</td>
</tr>
<tr>
<td>0 0 0 0 0 0</td>
<td>S8 S4 S2 S1</td>
<td></td>
</tr>
<tr>
<td>1 0 0 0 0 1</td>
<td>10-second counter (BANK=0)</td>
<td>—*2 S40 S20 S10</td>
</tr>
<tr>
<td>2 0 0 1 0 0</td>
<td>1-minute counter (BANK=0)</td>
<td>M8 M4 M2 M1</td>
</tr>
<tr>
<td>3 0 1 0 1 1</td>
<td>10-minute counter (BANK=0)</td>
<td>— M40 M20 M10</td>
</tr>
<tr>
<td>4 0 1 0 0 0</td>
<td>1-hour counter (BANK=0)</td>
<td>H8 H4 H2 H1</td>
</tr>
<tr>
<td>5 0 1 0 0 1</td>
<td>10-hour counter (BANK=0)</td>
<td>— — P/A, H20 H10</td>
</tr>
<tr>
<td>6 0 1 1 0</td>
<td>Day of the week counter (BANK=0)</td>
<td>— W4 W2 W1</td>
</tr>
<tr>
<td>7 0 1 1 1</td>
<td>Scratch register*8 (BANK=0, 1)</td>
<td>Scratch8 Scratch8 Scratch8 Scratch8</td>
</tr>
<tr>
<td>8 1 0 0 0 0</td>
<td>1-day counter (BANK=0)</td>
<td>D8 D4 D2 D1</td>
</tr>
<tr>
<td>9 1 0 0 0 1</td>
<td>10-day counter (BANK=0)</td>
<td>— — D20 D10</td>
</tr>
<tr>
<td>A 1 0 1 0</td>
<td>1-month counter (BANK=0)</td>
<td>MO8 MO4 MO2 MO1</td>
</tr>
<tr>
<td>B 1 0 0 1 1</td>
<td>10-month counter (BANK=0)</td>
<td>— — — MO10</td>
</tr>
<tr>
<td>C 1 1 0 0</td>
<td>1-year counter (BANK=0)</td>
<td>Y8 Y4 Y2 Y1</td>
</tr>
<tr>
<td>D 1 1 0 1</td>
<td>10-year counter (BANK=0)</td>
<td>Y80 Y40 Y20 Y10</td>
</tr>
<tr>
<td>E 1 1 1 0</td>
<td>Control register 1 (BANK=0, 1)</td>
<td>— — WTN/XSTP2 ADJ/BSY3</td>
</tr>
<tr>
<td>F 1 1 1 1</td>
<td>Control register 2 (BANK=0, 1)</td>
<td>IE/24 — BANK5 TEST6</td>
</tr>
</tbody>
</table>

*1) All the listed data can be read and written.
*2) The “—” mark indicates data which can be read only and set to “0” when read.
*3) The ADJ/BSY bit of the control register is set to ADJ for write operation and BSY for read operation.
*4) The WTEN/XSTP bit of the control register is set to WTEN for write operation and XSTP for read operation.
*5) The clock/calendar counter and the 32kHz clock pulse control register can be selected when the BANK=0 and BANK=1 respectively. To designate the BANK is unnecessary for scratch register and control register 1/2.
*6) The WTEN bit and TEST bit are set to “1” when CE is “L”.
*7) The CLEN bit is set to 0, when initial power-on or XSTP is set to 1.
*8) Data may be written and read into/from the Scratch register, which actually is not used.
2. Registers

2.1 Control Register 1 (at Eh)

<table>
<thead>
<tr>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>WTEN</td>
<td>ADJ</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>XSTP</td>
<td>BSY</td>
</tr>
</tbody>
</table>

(For write operation)

(For read operation)

±30-second Adjustment Bit

<table>
<thead>
<tr>
<th>ADJ</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ordinary operation</td>
</tr>
<tr>
<td>1</td>
<td>Second digit adjustment</td>
</tr>
</tbody>
</table>

Clock/Counter Busy-state Indication Bit

<table>
<thead>
<tr>
<th>BSY</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ordinary operation</td>
</tr>
<tr>
<td>1</td>
<td>Second digit carry or adjustment</td>
</tr>
</tbody>
</table>

Clock Counter Enable/Disable Setting Bit

<table>
<thead>
<tr>
<th>WTEN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Disabling of 1-second digit carry for clock counter</td>
</tr>
<tr>
<td>1</td>
<td>Enabling of 1-second digit carry for clock counter</td>
</tr>
</tbody>
</table>

Oscillator Halt Sensing Bit

<table>
<thead>
<tr>
<th>XSTP</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ordinary oscillation</td>
</tr>
<tr>
<td>1</td>
<td>Oscillator halt sensing</td>
</tr>
</tbody>
</table>

2.1-1 (ADJ)

The following operations are performed by setting the ADJ bit to 1.

After this bit is set to 1, the BSY bit is set to 1 for the maximum duration of 122.1μs.

If the WTEN bit is 0, these adjustment operations are started after the WTEN bit is set to 1.

1) For second digits ranging from “00” to “29” seconds:

 Time counters smaller than seconds are reset and second digits are set to “00”.

2) For second digits ranging from “30” to “59” seconds:

 Time counters smaller than seconds are reset and second digits are set to “00”. Minute digits are incremented by 1.
2.1-2 (BSY)
When the BSY bit is 1, the clock and calendar counter are being updated. Consequently, write operation should be performed for the counters when the BSY bit is 0. Meanwhile, read operation is normally performed for the counters when the BSY bit is 0, but can be performed without checking the BSY bit as long as appropriate software is provided for preventing read errors. (Refer to 13. Typical Software-based Operations.) The BSY bit is set to 1 in the following three cases:

(I) Adjustment of second digits by ±30 second

(II) Second digits increment by 1 (Subject to 1-sec digit carry when the WTEN bit is switched from 0 to 1)

(III) Ordinary 1-sec digit carry

![Diagram of BSY bit operations]

2.1-3 (WTEN)
The WTEN bit should be set to 0 to check that the BSY bit is 0 when performing read and write operations for the clock and calendar counters. For read operation, the WTEN bit may be left as 1 without checking the BSY bit as long as appropriate measures such as read repetition are provided for preventing read errors. The WTEN bit should be set to 1 after completing read and write operations, or will automatically be set to 1 by switching the CE pin to the low level. If 1-second digit carry occurs when the WTEN bit is 0, a second digit increment by 1 occurs when the WTEN bit is set to 1. There may be a possibility causing a time delay when it takes 1/1024 second or more to set WTEN bit from 0 to 1, Read data in state of WTEN=1 in such a case. (Refer to the item 13.3)

2.1-4 (XSTP)
The XSTP bit senses the oscillator halt. When the CE pin is held at the low level, the XSTP bit is set to 1 once the crystal oscillator is stopped after initial power-on or supply voltage drop and left to be 1 after it is restarted. When the CE pin is held at the high level, the XSTP bit is left as it was when the CE pin was held at the low level without checking oscillation stop. As such, the XSTP bit can be used to validate clock and calendar count data after power-on or supply voltage drop. When the XSTP is set to 1, CLEN is set to 0 and 32.768kHz clock pulse is output from 32KOUT pin. The XSTP bit is set to 0 when any data is written to the control register 1 (at Eh) with ordinary oscillation.
2.2 Control Register 2 (at Fh)

<table>
<thead>
<tr>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/24</td>
<td>—</td>
<td>BANK</td>
<td>TEST</td>
</tr>
<tr>
<td>12/24</td>
<td>0</td>
<td>BANK</td>
<td>TEST</td>
</tr>
</tbody>
</table>

(For write operation)

(For read operation)

Bit for Testing *1

<table>
<thead>
<tr>
<th>TEST</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Testing mode</td>
</tr>
<tr>
<td>1</td>
<td>Ordinary operation mode</td>
</tr>
</tbody>
</table>

Bank Selection Bit *2

<table>
<thead>
<tr>
<th>BANK</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Clock/calendar counter</td>
</tr>
<tr>
<td>1</td>
<td>CLEN bit</td>
</tr>
</tbody>
</table>

12/24-hour Time Display System Selection Bit *3

<table>
<thead>
<tr>
<th>12/24</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12-hour time display system (separate for mornings and afternoons)</td>
</tr>
<tr>
<td>1</td>
<td>24-hour time display system</td>
</tr>
</tbody>
</table>

*1) (TEST) Set the TEST bit to 1 in ordinary operation. TEST bit is set automatically to 1 when the CE pin is ‘L’.

*2) (BANK) There is no need to designate BANK bit for scratch register and Control register 1/2.

*3) (12/24) The 12/24 bit specifies time digit display in BCD code.

Either the 12-hour or 24-hour time display system should be selected before time setting.
2.3 32kHz clock pulse Control Register (BANK1, at Ah)

<table>
<thead>
<tr>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>*</td>
<td>*</td>
<td>CLEN</td>
</tr>
</tbody>
</table>

1) The “” mark indicates data which are set to 0 for read cycle and not written for write cycle.
*2) CLEN
32kHz clock pulse control bit
When the CLEN bit is set to 0, 32.768kHz clock pulse is output from 32KOUT pin.
When the CLEN bit is set to 1, 32KOUT pin is high impedance.
The CLEN bit is set to 0 when the XSTP=1 (Oscillator halt sensing).

3. Counters

3.1 Clock counter (BANK 0, at 0h-5h)

<table>
<thead>
<tr>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
</tr>
</thead>
<tbody>
<tr>
<td>S8</td>
<td>S4</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>*</td>
<td>S40</td>
<td>S20</td>
<td>S10</td>
</tr>
<tr>
<td>M8</td>
<td>M4</td>
<td>M2</td>
<td>M1</td>
</tr>
<tr>
<td>*</td>
<td>M40</td>
<td>M20</td>
<td>M10</td>
</tr>
<tr>
<td>H8</td>
<td>H4</td>
<td>H2</td>
<td>H1</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>P/A or H20</td>
<td>H10</td>
</tr>
</tbody>
</table>

1) The “” mark indicates data which are set to 0 for read cycle and not set for write cycle.
*2) Any carry to 1-second digits from the second counter is disabled when the WTEN bit (of the control register 1) is set to 0.
*3) Time digit display (BCD code):
 Second digits : Range from 00 to 59 and carried to minute digits when incremented from 59 to 00.
 Minute digits : Range from 00 to 59 and carried to hour digits when incremented from 59 to 00.
 Hour digits : Range as shown in the section on the 12/24 bit and carried to day and day-of-the-week digits when incremented from 11 p.m. to 12 a.m. or 23 to 00.
*4) Any registered imaginary time should be replaced with actual time as carrying to such registered imaginary time digits from lower-order ones cause the clock counter to malfunction.

3.2 Day-of-the-week counter (BANK 0, at 6h)

<table>
<thead>
<tr>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>W4</td>
<td>W2</td>
<td>W1</td>
</tr>
</tbody>
</table>

1) The “” mark indicates data which are set to 0 for read cycle and not set for write cycle.
*2) Day-of-the-week digits are incremented by 1 when carried to 1-day digits.
*3) Day-of-the-week digits display (incremented in septimal notation):
 (W4, W2, W1)=(000) → (001) → ... → (110) → (000)
 The relation between days of the week and day-of-the-week digits is user changeable (e.g. Sunday=000).
*4) The (W4, W2, W1) should not be set to (111).
3.3 Calendar counter (BANK 0, at 8h-Dh)

<table>
<thead>
<tr>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
</tr>
</thead>
<tbody>
<tr>
<td>D8</td>
<td>D4</td>
<td>D2</td>
<td>D1</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>D20</td>
<td>D10</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>*</td>
<td>MO10</td>
</tr>
<tr>
<td>MO8</td>
<td>MO4</td>
<td>MO2</td>
<td>MO1</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Y8</td>
<td>Y1</td>
<td>Y2</td>
<td>Y1</td>
</tr>
<tr>
<td>Y80</td>
<td>Y40</td>
<td>Y20</td>
<td>Y10</td>
</tr>
</tbody>
</table>

1) The "*" mark indicates data which are set to 0 for read cycle and not set for write cycle.
2) The automatic calendar function provides the following calendar digit displays in BCD code.
 - Day digits: Range from 1 to 31 (for January, March, May, July, August, October, and December).
 Range from 1 to 30 (for April, June, September, and November).
 Range from 1 to 29 (for February in leap years).
 Range from 1 to 28 (for February in ordinary years).
 Carried to month digits when cycled to 1.
 - Month digits: Range from 1 to 12 and carried to year digits when cycled to 1.
 - Year digits: Range from 00 to 99 and counted as 00, 04, 08, ..., 92, and 96 in leap years.
3) Any registered imaginary time should be replaced with actual time as carrying to such registered imaginary time digits from lower-order ones cause the clock counter to malfunction.
USAGES

1. Read Data (For the RS5C321A)

 The real-time clock becomes accessible by switching the CE pin from the low level to high level to enable interfacing with the CPU and then inputting setting data (control bits and address bits) to the SIO pin in synchronization with shift clock pulses from the SCLK pin. The input data are registered in synchronization with the falling edge of the SCLK. When the data is read, the read cycle shall be set by control bits then registered data can be read out from SIO pin in synchronization with the rising edge of the SCLK.

 • Control bits
 - R/W: Establishes the read mode when set to 1, and the write mode when set to 0.
 - AD: Writes succeeding addressing bits (A3-A0) to the address register when set to 1 with the DT bit set to 0 and performs no such write operation in any other case.
 - DT: Writes data bits to counter or register specified by the address register set just before when set to 1 with the R/W and AD bits set equally to 0 and performs no such write operation in any other case.

 • Address bits
 - A3-A0: Inputs the bits MSB to LSB in the address table describing the functions.

1.1 Read Cycle Flow

1. The CE pin is switched from “L” to “H”.
2. Four control bits (with the first bit ignored) and four read address bits are input from the SIO pin. At this time, control bits R/W and AD are set equally to 1 while a control bit DT is set to 0. (see the SCLK 1A-8A)
3. The SIO pin enters the output mode at the rising edge of the shift clock pulse 2B from the SCLK pin while the four read bits (MSB → LSB) at designated addresses are output at the rising edge of the shift clock pulse 5B. (see the figure below)
4. Then, the SIO pin returns to the input mode at the rising edge of the shift clock pulse 1C. Afterwards control bits and address bits are input at the shift clock pulses 1C in the same manner as at the shift clock pulse 1A.
5. At the end of read cycle, the CE pin is switched from “H” to “L” (after tCEH from the falling edge of the eighth shift clock pulse from the SCLK pin). Following on read cycle, write operation can be performed by setting control bits in the write mode at the shift clock pulse 1C and later with the CE pin held at “H”.

) In the above figure, the “” mark indicates arbitrary data; the “—” mark indicates unknown data.
The “○” mark indicates data which are available when the SIO pin is held at “H”, “L”, or Hiz level.
The diagonally shaded area of the CE and the SCLK pins indicate “H” or “L”.
2. Write Data (For the RS5C321A)

Writing data to the real-time clock requires inputting setting data (control bits, address bits and data bits) to the SIO pin and then establishing the write mode by using a control bit R/W in the same manner as in read operation.

- Control bits and address bits are described in the previous section on read cycle.

- Data bits
 D3-D0: Inputs the data bits MSB to LSB in the addressing table describing the functions.

2.1 Write Cycle Flow

1. The CE pin is switched from “L” to “H”.
2. Four control bits (with the first bit ignored) and four write address bits are input from the SIO pin. At this time, control bits R/W and DT are set equally to 0 while a control bit AD is set to 1. (see the SCLK 1A-8A)
3. Four control bits and four bits of data to be written are input in the descending order of their significance. At this time, control bits R/W and AD are set equally to 0 while a control bit DT is set to 1. (see the clock 1B-8B)
4. When write cycle is continued, control bits and address bits are input at the shift clock pulse 1C and later in the same manner as at the shift clock pulse 1A.
5. At the end of write operation, control bits R/W, AD, and DT are set equally to 0 (at the falling edge of shift clock pulse 5A and later from the SCLK pin) or the CE pin is switched from “H” to “L” (after tCEH from the falling edge of the eighth shift clock pulse from the SCLK pin). Following on write cycle, read operation can be performed by setting control bits in the read mode at the shift clock pulse 1C and later with the CE pin held at “H”.

) In the above figure, the “” mark indicates arbitrary data; and the diagonally shaded area of CE and SCLK indicates “H” or “L”.

*) Control bits and address bits are described in the previous section on read cycle.
3. Read Data (For the RS5C321B)

The real-time clock becomes accessible by switching the CE pin from the low level to high level to enable interfacing with the CPU and then inputting setting data (control bits and address bits) to the SIO pin in synchronization with shift clock pulses from the SCLK pin. The input data are registered in synchronization with the rising edge of the SCLK. When the data is read, the read cycle shall be set by control bits then registered data can be read out from SIO pin in synchronization with the falling edge of the SCLK.

- **Control bits**
 - R/W: Establishes the read mode when set to 1, and the write mode when set to 0.
 - AD: Writes succeeding addressing bits (A3-A0) to the address register when set to 1 with the DT bit set to 0 and performs no such write operation in any other case.
 - DT: Writes data bits to counter or register specified by the address register set just before when set to 1 with the R/W and AD bits set equally to 0 and performs no such write operation in any other case.

- **Address bits**
 - A3-A0: Inputs the bits MSB to LSB in the address table describing the functions.

3.1 Read Cycle Flow

1. The CE pin is switched from “L” to “H”.
2. Four control bits (with the first bit ignored) and four read address bits are input from the SIO pin. At this time, control bits R/W and AD are set equally to 1 while a control bit DT is set to 0. (see the SCLK 1A-8A)
3. The SIO pin enters the output mode at the falling edge of the shift clock pulse 2B from the SCLK pin while the four read bits (MSB → LSB) at designated addresses are output at the falling edge of the shift clock pulse 5B. (see the figure below)
4. Then, the SIO pin returns to the input mode at the falling edge of the shift clock pulse 1C. Afterwards control bits and address bits are input at the shift clock pulses 1C in the same manner as at the shift clock pulse 1A.
5. At the end of read cycle, the CE pin is switched from “H” to “L” (after tCEH from the rising edge of the eighth shift clock pulse from the SCLK pin). Following on read cycle, write operation can be performed by setting control bits in the write mode at the shift clock pulse 1C and later with the CE pin held at “H”.

) In the above figure, the “” mark indicates arbitrary data; the “–” mark indicates unknown data.
The “[]” mark indicates data which are available when the SIO pin is held at “H”, “L”, or Hiz level.
The diagonally shaded area of the CE and the SCLK pins indicate “H” or “L”. Discontinued
4. Write Data (For the RS5C321B)

Writing data to the real-time clock requires inputting setting data (control bits, address bits and data bits) to the SIO pin and then establishing the write mode by using a control bit R/W in the same manner as in read operation.

- Data bits
 D3-D0: Inputs the data bits MSB to LSB in the addressing table describing the functions

4.1 Write Cycle Flow

1. The CE pin is switched from “L” to “H”.
2. Four control bits (with the first bit ignored) and four write address bits are input from the SIO pin. At this time, control bits R/W and DT are set equally to 0 while a control bit AD is set to 1. (see the SCLK 1A-8A)
3. Four control bits and four bits of data to be written are input in the descending order of their significance. At this time, control bits R/W and AD are set equally to 0 while a control bit DT is set to 1. (see the SCLK 1B-8B)
4. When write cycle is continued, control bits and address bits are input at the shift clock pulse 1C and later in the same manner as at the shift clock pulse 1A.
5. At the end of write operation, control bits R/W, AD, and DT are set equally to 0 (at the rising edge of shift clock pulse 5A and later from the SCLK pin) or the CE pin is switched from “H” to “L” (after tCEH from the rising edge of the eighth shift clock pulse from the SCLK pin). Following on write cycle, read operation can be performed by setting control bits in the read mode at the shift clock pulse 1C and later with the CE pin held at “H”.

) In the above figure, the “” mark indicates arbitrary data; and the diagonally shaded area of CE and SCLK indicates “H” or “L”.
5. CE Pin

1) Switching the CE pin to the high level enables the SCLK/SCLK and SIO pins, allowing data to be serially read from and written to the SIO pin in synchronization with shift clock pulses input from the SCLK/SCLK pin.

2) Switching the CE pin to the low level or opening disables the SCLK/SCLK and SIO pins, causing high impedance and resetting the internal interfacing circuits such as the shift register. While data of the address register and bank bit which have been written just before should be preserved.

3) The CE pin should be held at the low level or open state when no access is made to the RS5C321A/B. The CE pin incorporates a pull-down resistor.

4) During system power-down (being back-up battery powered), the low-level input of the CE pin should be brought as close as possible to the VSS level to minimize the loss of charge in the battery.

5) The CE pin should be held at the low level in order to be enable oscillator halt sensing. Holding the CE pin at the high level, therefore, disables oscillator halt sensing, retaining the value of the XSTP (oscillator halt sensing) bit which exists immediately before the CE pin is switched to the high level.

Considerations

When the power turns on from 0V, the CE pin should be set low or open once.
6. Configuration of Oscillating Circuit

Considerations in Mounting Components Surrounding Oscillating Circuit

1) Mount the crystal oscillators and C_G in the closest possible position to the IC.
2) Avoid laying any signal or power line close to the oscillation circuit (particularly in the area marked with "← A →" in the above figure).
3) Apply the highest possible insulation resistance between the OSCIN or OSCOUT pin and the PCB.
4) Avoid using any long parallel line to wire the OSCIN or OSCOUT pin.
5) Take extreme care not to cause condensation, which leads to various problems such as oscillation halt.

Other Relevant Considerations

1) When applying an external input of clock pulses (32.768kHz) to the OSCIN pin:
 DC couplingProhibited due to mismatching input levels.
 AC coupling.............Permissible except that unpredictable results may occur in oscillator halt sensing due to possible sensing errors caused by noises, etc.
2) Avoid using the oscillator output of the RS5C321A/B (from the OSCOUT pin) to drive any other IC for the purpose of ensuring stable oscillation.

Typical external device:
X’tal : 32.768kHz
 $(R_f=30k\Omega \text{TYP.})$
 $(C_L=6pF \text{ to } 8pF)$
$C_G=8pF \text{ to } 20pF$

Typical values of internal devices
$R_f=15M\Omega \text{TYP.}$
$R_d=60k\Omega \text{TYP.}$
$C_d=10pF \text{TYP.}$

*) The oscillation circuit is driven at a constant voltage of about 1.5V relative to the Vss level. Consequently, it generates a waveform having a peak-to-peak amplitude of about 1.5V on the positive side of the Vss level.
7. Oscillator Halt Sensing

Oscillation Halt can be sensed through monitoring the XSTP bit with preceding setting of the XSTP bit to 0 by writing any data to the control register 1. Upon oscillator halt sensing, the XSTP bit is switched from 0 to 1. This function can be applied to judge clock data validity. The CLEN bit is set to 0 when XSTP=1, and 32KOUT pin is forced to output 32.768kHz clock pulses.

![Diagram](attachment:image.png)

- [x] Power-on from 0V *1
- [x] Writing of data to control register 1 (in the presence of oscillation)
- [x] Oscillation halt
- [x] Oscillation restart *2

*1) While the CE pin is held at the low level, the XSTP bit is set to 1 upon power-on from 0V. Note that any instantaneous power disconnection may cause operational failure. When the CE pin is held at the high level, oscillation halt is not sensed and the value of the XSTP bit when the CE pin is held at the low level is retained.

*2) Once oscillation halt has been sensed, the XSTP bit is held at 1 even if oscillation is restarted.

Considerations in Use of XSTP Bit

Ensure error-free oscillation halt sensing by preventing the following:

1. Instantaneous disconnection of VDD
2. Condensation on the crystal oscillator
3. Generation of noise on the PCB in the crystal oscillator
4. Application of voltage exceeding prescribed maximum ratings to the individual pins of the IC
8. Typical Power Supply Circuit

1) Connect the capacitance of the oscillation circuit to the Vss pin.
2) Mount the high-and low-frequency by-pass capacitors in parallel and very close to the RS5C321.
3) Connect the pull-up resistor of the 32KOUT pin to two different positions depending on whether the resistor is in use during battery back-up.
 - When not in use during battery back-up
 Position A in the left figure
 - When in use during battery back-up
 Position B in the left figure
4) Timing of power-on, power-off and CE pin refer to following figure.
5) When a diode are in use in place of the components surrounded by dotted lines, note that applying voltage to any input pins should be less than the rating of VDD +0.3V by using of schottky diode.

9. Oscillation Frequency Adjustment

9.1 Oscillation Frequency Measurement

1) After initial power-on (XSTP=1), 32KOUT pin outputs 32.768kHz clock pulse, which is measured with a frequency counter.
2) Ensure that the frequency counter has more than six digits (on the order of 1 ppm).
3) Place the Cg between the OSCIN pin and the VSS level and pull up the 32KOUT pin output to the VDD.
9.2 Oscillation Frequency Adjustment

Any rise or fall in ambient temperature from its reference value ranging from 20 to 25 degrees Celsius causes a time delay for a 32.768kHz crystal oscillator. It is recommendable, therefore, to set slightly high oscillation frequency at room temperature.

After adjustment, oscillation frequency is subject to fluctuations of an ambient temperature and supply voltage. See “12. Typical Characteristic Measurements”.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any rise or fall in ambient temperature from its reference value ranging from 20 to 25 degrees Celsius causes a time delay for a 32.768kHz crystal oscillator. It is recommendable, therefore, to set slightly high oscillation frequency at room temperature.</td>
</tr>
</tbody>
</table>
10. 32.768kHz Clock Output

32KOUT outputs 32.768kHz clock pulse, the pin switches to high impedance when no output is made. 32.768kHz clock is controllable by CLEN bit. Set the CE pin to “L” after power-on.

<table>
<thead>
<tr>
<th>CLEN bit</th>
<th>32KOUT pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>32.768kHz clock pulse</td>
</tr>
<tr>
<td>1</td>
<td>High Impedance</td>
</tr>
</tbody>
</table>

CLEN bit is set to 0 when XSTP is set to 1. (oscillation halt detecting or initial power on)

11. Typical Application

*1) Connect the capacitance of the oscillation circuit to the VSS pin.
*2) Mount the high-and low-frequency by-pass capacitors in parallel and very close to the RS5C321.
*3) Connect the pull-up resistor of the 32KOUT pin to two different positions depending on whether the resistor is in use during battery back-up:
 (I) When not in use during battery back-up.............Position A in the above figure
 (II) When in use during battery back-up.................Position B in the above figure
*4) When using a “D” circuit in place of “C”, note that forward voltage of diode should be minimized to eliminate applying excess voltage to input pins. (Take the utmost care on system powering-ON and-OFF).
12. Typical Characteristic Measurements

12.1 Standby Current vs. CG

\[\text{Standby Current } I_{DD} (\mu A) \]

\[\text{CG (pF)}\]

\[0\quad 0.0\quad 1.0\quad 2.0\]

\[\text{VDD} = 5V\quad VDD = 3V\]

\[\text{Topt} = 25^\circ C, 32KOUT=Open\]

12.2 Standby Current vs. VDD

\[\text{Standby Current } I_{DD} (\mu A) \]

\[\text{VDD (V)}\]

\[0\quad 0.0\quad 1.0\quad 2.0\]

\[32K output on\quad 32K output off\]

\[\text{Topt} = 25^\circ C, 32KOUT=Open\]

12.3 Operational Current vs. SCLK/SCLK Frequency

\[\text{Operational Current } I_{OPR} (mA) \]

\[\text{SCLK/SCLK Frequency (MHz)}\]

\[0.01\quad 0.001\quad 0.1\quad 1\quad 10\]

\[\text{VDD} = 5V, 32K output off\quad \text{VDD} = 3V, 32K output off\]

\[\text{Topt} = 25^\circ C\]

12.4 Standby Current vs. Temperature

\[\text{Standby Current } I_{DD} (\mu A) \]

\[\text{Temperature Topt (°C)}\]

\[-60\quad -40\quad -20\quad 0\quad 20\quad 40\quad 60\quad 80\quad 100\]

\[\text{VDD} = 3V, 32K output on\quad \text{VDD} = 6V, 32K output off\quad \text{VDD} = 3V, 32K output off\]

\[\text{X'tal: } R_1 = 30\, \Omega\quad \text{Topt} = 25^\circ C\]

Input Pin: VDD or VSS
Output Pin: Open

Discontinued
12.5 Oscillation Frequency Deviation vs. C_G
(f0: $C_G=10\,\text{pF}$ reference)

12.6 Oscillation Frequency Deviation vs. V_{DD}
(f0: $V_{DD}=4\,\text{V}$ reference)

12.7 Oscillation Frequency Deviation vs. Temperature (f0: Topt=25°C reference)

12.8 Oscillation Start Time vs. V_{DD}

12.9 V_{DS} vs. I_{DS} for Nch Open Drain Output
13. Typical Software-based Operations

13.1 Initialization upon Power-on

13.2 Write Operation to Clock and Calendar Counters

*1) Switch the CE pin to the low level immediately after power-on.

*2) When not making oscillation halt sensing (data validity), the XSTP bit need not be checked.

*3) On powering on from 0V, 32KOUT pin outputs 32.768kHz clock pulses. Set CLEN=1 when turning 32.768kHz off during initialization.

*4) Set the ADJ bit to 1. When writing control register 1, if the oscillator has operated, the XSTP bit is changed from 1 to 0.

*5) It takes about 0.1 to 2 seconds to be set the BSY bit to 0 from oscillation starting upon power-on from 0V. Provide an exit from an oscillation start loop to prepare for oscillation failure.

*6) Set the XSTP bit to 0 by writing data to the control register 1, and set to the control register 2, 0h for the 12-hour time display system. 4h for the 24-hour time display system.

When Using the XSTP Bit

Ensure stable oscillation by preventing the following:
1) Condensation on the crystal oscillator
2) Instantaneous disconnection of power
3) Generation of clock noises, etc, in the crystal oscillator
4) Charge of voltage exceeding prescribed maximum ratings to the individual pins of the IC

*1) After switching the CE pin to the high level, hold it at the high level until any subsequent operation requires switching it to the low level. (Note that switching the CE pin to the low level sets the WTEN bit to 1.)

*2) WTEN bit is set to 0.

*3) The BSY bit is held at 1 for a maximum duration of 122.1µs.

*4) Switch the CE pin to the low level to set the WTEN bit to 1. During write operation to the clock and calendar counters, one 1-second digit carry causes a 1-second increment while two 1-second digit carries also cause only a 1-seconds increment, which, in turn, causes a time delay.
13.3 Read Operation from Clock and Calendar Counters

13.3-1

- Control register $\leftarrow 0h$
- If $\text{BSY}=0$, then YES.
- Read from clock and calendar counters.
- If $\text{CE}=L$, then YES.
- Wait or other operations.
- If $\text{CE}=L$, then NO.

13.3-2

- Read 1-second digit of clock counter.
- Read from clock and calendar counters.
- Again read 1-second digit of clock counter.
- If two 1-second digit readings do not match, then NO.
- If two 1-second digit readings match, then YES.

*1) to *4) These notes are the same as 13.2 notes *1) to *4).

*5) When needing any higher-order digits than the minute digits, replace second digits with minute digits. (Reading LSD one of the required digits twice.)

Note

Read data as described in 13.3-2 when it takes $(1/1024)$ sec or more to set the WTEN bit from 0 to 1 ($\text{CE}=L$), the read operation described in 13.3-1 is prohibited as such a case.
13.4 Second-digit Adjustment by ±30 seconds

- Set the ADJ bit to 1.
 (The BSY bit is held at 1 for a maximum duration of 122.1µs after the ADJ bit is set to 1.)

13.5 Oscillation Start Judgment

- The XSTP bit is set to 1 upon power-on from 0V.
- It takes approximately 0.1 to 2 seconds to start oscillation. Provide an exit from an oscillation start loop to prepare for oscillation failure.

When Using the XSTP Bit

Ensure stable oscillation by preventing the following:
1. Condensation on the crystal oscillator
2. Instantaneous disconnection of power
3. Generation of clock noises, etc, in the crystal oscillator
4. Charge of voltage exceeding prescribed maximum ratings to the individual pins of the IC
Ricoh presented with the Japan Management Quality Award for 1999. Ricoh continually strives to promote customer satisfaction, and shares the achievements of its management quality improvement program with people and society.

Ricoh awarded ISO 14001 certification. The Ricoh Group was awarded ISO 14001 certification, which is an international standard for environmental management systems, at both its domestic and overseas production facilities. Our current aim is to obtain ISO 14001 certification for all of our business offices.

http://www.ricoh.com/LSI/

Ricoh completed the organization of the lead-free production for all of our products. After Apr. 1, 2006, we will ship out the lead-free products only. Thus, all products that will be shipped from now on comply with RoHS Directive.