High Input Voltage Tolerant Boost Voltage Regulator

OUTLINE

The R1152N Series are CMOS-based positive voltage regulator controller ICs with high output voltage accuracy, low supply current.

The high output current regulator can be composed with this IC, an external power transistor, and capacitors. Each of these voltage regulator controllers consists of a voltage reference unit, an error amplifier, comparators, resistors for output voltage setting, a peak current limit protection circuit, a short current limit circuit, and a chip enable circuit. The output voltage of these ICs is internally fixed.

In addition to low supply current by the merit of CMOS process, the chip enable function prolongs the battery life.

Maximum operating input voltage is up to 18V, thus these ICs are very suitable for the power supply for hand-held equipment and other power management applications using various AC adapters.

Since the package for these ICs is SOT-23-5 package, high density mounting of the ICs on boards is possible.

FEATURES

- Supply Current ..Typ.10μA
- Standby Mode ...Typ.0.1μA
- Dropout Voltage ..Typ.0.1V(I_{\text{out}}=300mA, V_{\text{out}}=5.0V,\text{Depends on External Transistor})
- Output Voltage Accuracy............................±2.0%
- Output Voltage ...Internally fixed output voltage : 2.5V to 12.0V (0.1V steps)
 Externally adjustable output voltage : the reference voltage is 2.5V
 (with external divider resistors can be set more than12.1V)
 (For other voltages, please refer to MARK INFORMATIONS.)
- Operating Input VoltageMax.18V
- Package ..SOT-23-5
- Built-in Chip Enable Circuit ("H" active)
- Built-in Current Limit Circuit
- Built-in Output Short Current Limit Circuit

APPLICATIONS

- Power source for home appliances such as refrigerators, rice cookers, etc.
- Power source for car audio equipment, car navigation system, and ETC system.
- Power source for notebook PCs, digital TVs, cordless phones, and LAN system.
- Power source for copiers, printers, facsimiles, and scanners.
SELECTED BLOCK DIAGRAMS

The output voltage for the ICs can be selected at the user’s request.

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Package</th>
<th>Quantity per Reel</th>
<th>Pb Free</th>
<th>Halogen Free</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1152NxxxB*-TR-FE</td>
<td>SOT-23-5</td>
<td>3,000 pcs</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

xxx : The output voltage can be designated in the range from 2.5V(025) to 12.0V(120) in 0.1V steps. (For other voltages, please refer to MARK INFORMATIONS.)
PIN CONFIGURATION

- SOT-23-5

Pin No	Symbol	Pin Description
1 | CE | Chip Enable Pin
2 | GND | Ground Pin
3 | V_{IN} | Input Pin
4 | V_{DD} | External Transistor Drive Pin
5 | V_{OUT} | Voltage Regulator Output Pin

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>IN</sub></td>
<td>Input Voltage</td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td>V<sub>SURGE</sub></td>
<td>SURGE Input Voltage<sup>2</sup></td>
<td>26</td>
<td>V</td>
</tr>
<tr>
<td>V<sub>CE</sub></td>
<td>Input Voltage (CE Pin)</td>
<td>−0.3 to V<sub>IN</sub>+0.3 ≤ 20</td>
<td>V</td>
</tr>
<tr>
<td>V<sub>OUT</sub></td>
<td>Output Voltage (V<sub>OUT</sub> Pin)</td>
<td>−0.3 to V<sub>IN</sub>+0.3 ≤ 20</td>
<td>V</td>
</tr>
<tr>
<td>V<sub>EXT</sub></td>
<td>Output Voltage (EXT Pin)</td>
<td>−0.3 to V<sub>IN</sub>+0.3 ≤ 20</td>
<td>V</td>
</tr>
<tr>
<td>I<sub>EXT</sub></td>
<td>EXT Output Current</td>
<td>25</td>
<td>mA</td>
</tr>
<tr>
<td>P<sub>D</sub></td>
<td>Power Dissipation (SOT-23-5<sup>1</sup>)</td>
<td>420</td>
<td>mW</td>
</tr>
<tr>
<td>Topt</td>
<td>Operating Temperature Range</td>
<td>−40 to +105</td>
<td>°C</td>
</tr>
<tr>
<td>Tstg</td>
<td>Storage Temperature Range</td>
<td>−55 to +125</td>
<td>°C</td>
</tr>
</tbody>
</table>

¹ For Power Dissipation, please refer to PACKAGE INFORMATION.
² duration=200ms

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field.

The functional operation at or over these absolute maximum ratings is not assured.
ELECTRICAL CHARACTERISTICS

• R1152NxxxB

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{OUT}})</td>
<td>Output Voltage</td>
<td>(V_{\text{IN}} = \text{Set } V_{\text{OUT}} + 1 \text{V}) (I_{\text{OUT}} = 100 \text{mA})</td>
<td>(\times 0.980)</td>
<td>(\times 1.020)</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(I_{\text{OUT}})</td>
<td>Output Current</td>
<td>Refer to the specification Table</td>
<td>1</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>(\Delta V_{\text{OUT}}/\Delta I_{\text{OUT}})</td>
<td>Load Regulation</td>
<td>(V_{\text{IN}} = \text{Set } V_{\text{OUT}} + 1 \text{V}) (1 \text{mA} \leq I_{\text{OUT}} \leq 100 \text{mA})</td>
<td>Refer to the specification table by output voltage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{\text{DROP}})</td>
<td>Dropout Voltage</td>
<td>(I_{\text{OUT}} = 300 \text{mA})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{\text{SS}})</td>
<td>Supply Current</td>
<td>(V_{\text{IN}} = \text{Set } V_{\text{OUT}} + 1 \text{V}, I_{\text{OUT}} = 0 \text{mA})</td>
<td></td>
<td>10</td>
<td>24</td>
<td>(\mu \text{A})</td>
</tr>
<tr>
<td>(I_{\text{STAND}})</td>
<td>Supply Current (Standby)</td>
<td>(V_{\text{IN}} = 18 \text{V}, CE = 0 \text{V})</td>
<td>0.1</td>
<td>1</td>
<td></td>
<td>(\mu \text{A})</td>
</tr>
<tr>
<td>(I_{\text{EXTLEAK}})</td>
<td>EXT Leakage Current</td>
<td></td>
<td></td>
<td>0.1</td>
<td></td>
<td>(\mu \text{A})</td>
</tr>
<tr>
<td>(\Delta V_{\text{OUT}}/\Delta V_{\text{IN}})</td>
<td>Line Regulation</td>
<td>(V_{\text{OUT}} + 0.5 \text{V} \leq V_{\text{IN}} \leq 18.0 \text{V}) (I_{\text{OUT}} = 100 \text{mA})</td>
<td>0.01</td>
<td>0.10</td>
<td></td>
<td>%/V</td>
</tr>
<tr>
<td>(V_{\text{IN}})</td>
<td>Input Voltage</td>
<td></td>
<td></td>
<td>18</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(I_{\text{SC}})</td>
<td>Current Limit</td>
<td>Refer to the specification Table Base Current (I_{\text{B}}) of PNP Tr.</td>
<td>10</td>
<td>25</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>(I_{\text{LIMIT}})</td>
<td>Short Current Limit</td>
<td>Base Current (I_{\text{B}}) of PNP Tr. (V_{\text{OUT}} = 0 \text{V})</td>
<td>600</td>
<td></td>
<td></td>
<td>(\mu \text{A})</td>
</tr>
<tr>
<td>(\Delta V_{\text{OUT}}/\Delta T_{\text{OPT}})</td>
<td>Output Voltage Temperature Coefficient</td>
<td>(I_{\text{OUT}} = 100 \text{mA}) (-40 \degree \text{C} \leq T_{\text{OPT}} \leq 105 \degree \text{C})</td>
<td>(\pm 50)</td>
<td></td>
<td></td>
<td>ppm/\degree C</td>
</tr>
<tr>
<td>(V_{\text{CEH}})</td>
<td>CE Input Voltage "H"</td>
<td></td>
<td>2.0</td>
<td></td>
<td>(V_{\text{IN}})</td>
<td>(\mu \text{A})</td>
</tr>
<tr>
<td>(V_{\text{CEL}})</td>
<td>CE Input Voltage "L"</td>
<td></td>
<td>0</td>
<td></td>
<td>0.3</td>
<td>V</td>
</tr>
</tbody>
</table>

Note1: This item depends on the capability of external PNP transistor. Use low saturation type transistor with \(h_{FE} \) value range of 100 to 300.

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.
- Load Regulation Table (T_{opt}=25°C)

<table>
<thead>
<tr>
<th>Output Voltage V_{OUT} (V)</th>
<th>Load Regulation (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Typ.</td>
</tr>
<tr>
<td>$2.5 \leq V_{OUT} \leq 5.0$</td>
<td>4</td>
</tr>
<tr>
<td>$5.1 \leq V_{OUT} \leq 12.0$</td>
<td>4</td>
</tr>
</tbody>
</table>

- Dropout Voltage Table (T_{opt}=25°C)

<table>
<thead>
<tr>
<th>Output Voltage V_{OUT} (V)</th>
<th>Dropout Voltage (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Typ.</td>
</tr>
<tr>
<td>$2.5 \leq V_{OUT} \leq 4.9$</td>
<td>150</td>
</tr>
<tr>
<td>$5.0 \leq V_{OUT} \leq 12.0$</td>
<td>100</td>
</tr>
</tbody>
</table>

This specification depends on an external transistor. ("2SB1642" is the reference item.)

- Output Current Limit Condition Table (T_{opt}=25°C)

<table>
<thead>
<tr>
<th>Output Voltage V_{OUT} (V)</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2.5 \leq V_{OUT} \leq 3.9$</td>
<td>$V_{IN}=CE=EXT=5.0V$</td>
</tr>
<tr>
<td>$4.0 \leq V_{OUT} \leq 12.0$</td>
<td>$V_{IN}=CE=EXT=V_{OUT}+1.0V$</td>
</tr>
</tbody>
</table>

- Output Current Condition Table (T_{opt}=25°C)

<table>
<thead>
<tr>
<th>Output Voltage V_{OUT} (V)</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2.5 \leq V_{OUT} \leq 3.9$</td>
<td>$V_{IN}=CE=5.0V$</td>
</tr>
<tr>
<td>$4.0 \leq V_{OUT} \leq 12.0$</td>
<td>$V_{IN}=CE=V_{OUT}+1.0V$</td>
</tr>
</tbody>
</table>
OPERATION

In these ICs, fluctuation of Output Voltage, \(V_{\text{OUT}} \) is detected by the feed-back registers, and the result is compared with a reference voltage with the error amplifier and control the base current of an external PNP transistor so that a constant voltage is output. The base current is monitored with the base current limit circuit.

If the base current may be too large, the protection circuit works.

TECHNICAL NOTES

When using these ICs, consider the following points:

- Make \(V_{\text{DD}} \) and GND lines sufficient. When their impedance is high, noise pickup or unstable operation may result.

- When you choose an external transistor, select with considering output current, input voltage, and power dissipation. Generally, low \(V_{\text{CE}} \) (SAT) and \(h_{\text{FE}} \) range from 100 to 300 are the appropriate characteristics.

- In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, be sure to use a 10\(\mu \)F or more output capacitor, as close as possible to the ICs.

- If you choose an electrolytic capacitor, ESR shift by temperature should be small. If you choose a ceramic capacitor, add an appropriate series resistor.

- If the set output voltage is less than 4.0V, and \(I_{\text{OUT}} > 1 \text{A} \) must be obtained, at least \(V_{\text{IN}} \geq 5.0 \text{V} \) is the appropriate condition. (Supposed as \(h_{\text{FE}}=100 \))

- Voltage level for CE should not be floating, or middle range voltage. If the CE voltage is not appropriate, output voltage may be unstable or conduction current may flow.

- All external components should be located as close as possible to the IC, and wiring should be as short as possible.

- If \(h_{\text{FE}} \) value of the PNP transistor is too high, output voltage may rise at low load current (less than 1mA).
TEST CIRCUITS

Fig. 1 Standard test Circuit

Fig. 2 Supply Current Test Circuit

TYPICAL APPLICATIONS

Fixed Type Output

Adjustable Output
TYPICAL CHARACTERISTICS

1) Output Voltage vs. Output Current (Topt=25°C)
 a. External Tr.: 2SB1642

 ![Graph R1152N025B](image1)
 ![Graph R1152N033B](image2)

 ![Graph R1152N050B](image3)
 ![Graph R1152N120B](image4)

 b. External Tr.: 2SA1645

 ![Graph R1152N025B](image5)
 ![Graph R1152N033B](image6)
c. Output Voltage vs. Base Current (Topt=25°C)

R1152N025B

- **VIN=5.0V**

R1152N033B

- **VIN=5.0V**

R1152N050B

- **VIN=6.0V**

R1152N012B

- **VIN=13.0V**
2) Output Voltage vs. Input Voltage (Topt=25°C)
External Transistor: 2SB1642

3) Output Voltage vs. Temperature
4) Supply Current vs. Input Voltage (Topt=25°C)

R1152N033B

R1152N050B

R1152N120B

R1152N120B
5) Supply Current vs. Temperature

- **R1152N025B**
 - $V_{IN}=V_{OUT}=3.5V$
 - Graph showing supply current vs. temperature.

- **R1152N033B**
 - $V_{IN}=V_{OUT}=4.3V$
 - Graph showing supply current vs. temperature.

- **R1152N050B**
 - $V_{IN}=V_{OUT}=6.0V$
 - Graph showing supply current vs. temperature.

- **R1152N120B**
 - $V_{IN}=V_{OUT}=13.0V$
 - Graph showing supply current vs. temperature.

6) Ripple Rejection vs. Ripple Frequency (Topt=25°C)

- **R1152N025B**
 - $V_{IN}=3.5V+0.5V_{p-p}$
 - $I_{OUT}=100mA$, $C_{OUT}=10\mu F$
 - Graph showing ripple rejection vs. frequency.

- **R1152N033B**
 - $V_{IN}=4.3V+0.5V_{p-p}$
 - $I_{OUT}=100mA$, $C_{OUT}=10\mu F$
 - Graph showing ripple rejection vs. frequency.
7) Input Transient Response (Topt=25°C)
 a. External Tr.: 2SB1642

 R1152N025B
 \(V_{IN} = 6.0V + 0.5V_{p-p} \)
 \(I_{OUT} = 100mA, C_{OUT} = 10\mu F \)

 R1152N050B
 \(V_{IN} = 13.0V + 0.5V_{p-p} \)
 \(I_{OUT} = 100mA, C_{OUT} = 10\mu F \)

R1152N120B

Limited Product
b. External Tr.: 2SA1645

8) Load Transient Response (Topt=25°C)
a: External Tr.: 2SB1642

R1152
b. External Tr.: 2SA1645

CIN=0.1μF COUT=10μF

Limited Product
The output voltage of regulator with R1152N025x may be adjustable for any output voltage between its 2.5V reference and V_{DD} setting level. An external pair of resistors is required, as shown above figure.

The complete equation for the output voltage is described step by step as follows:

1. $I_2 = I_{IC} + I_3$...(1)
2. $I_3 = 2.5/R_3$...(2)

Thus,

$$I_2 = I_{IC} + 2.5/R_3$$...(3)

Therefore,

$$V_{OUT} = 2.5 + R_2 \times I_2$$...(4)

Put Equation (3) into Equation (4), then

$$V_{OUT} = 2.5 + R_2 \times (I_{IC} + 2.5/R_3)$$

$$= 2.5 \times (1 + R_3/R_2) \times R_2 \times I_{IC}$$...(5)

In 2nd term, or $R_2 \times I_{IC}$ will produce an error in V_{OUT}.

In Equation (5),

1. $I_{IC} = 2.5/R_2$...(6)
2. $R_2 \times I_{IC} = R_2 \times 2.5/R_2$

$$= 2.5 \times R_2/R_2$$...(7)

For better accuracy, choosing $R_2 \ll R_C$ reduces this error.

R_C is approximately 1.1MΩ.
For Stable Operation

Phase Compensation

In these ICs, phase compensation is externally made for securing stable operation even if the load current is varied. For this purpose, be sure to use a capacitor for the output pin with good frequency characteristics and ESR (Equivalent Series Resistance) of which is in the range described as follows:

Measuring Circuit for white noise; R1152NxxxB

The relations between I_{out} (Output Current) and ESR of Output Capacitor are shown below. The conditions when the white noise level is under 40\mu V (Avg.) are marked as the hatched area in the graph.

<Measurement conditions>
1) V_{IN} = V_{OUT} + 1V
2) Frequency band: 10Hz to 1MHz
3) Temperature: 25°C
4) C_{OUT}: Ceramic 10\mu F; ESR = 0.075\Omega (10kHz)
a) Tr.: 2SB1642

b) Tr.: 2SA1645
1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.

2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.

3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.

4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh’s or any third party’s intellectual property rights or any other rights.

5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.

6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, firecontainment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.

7. Anti-radiation design is not implemented in the products described in this document.

8. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

For the conservation of the global environment, Ricoh is advancing the decrease of the negative environmental impact material. After Apr. 1, 2006, we will ship out the lead free products only. Thus, all products that will be shipped from now on comply with RoHS Directive. Basically after Apr. 1, 2012, we will ship out the Power Management ICs of the Halogen Free products only. (Ricoh Halogen Free products are also Antimony Free.)