LOW NOISE 150mA LDO REGULATOR

OUTLINE

The R1126N Series are CMOS-based voltage regulator ICs with high output voltage accuracy, low supply current, low on Resistance, and low ripple rejection. Each of these ICs consists of a voltage reference unit, an error amplifier, resistor-net for voltage setting, a short current limit circuit, a chip enable circuit, and so on.

These ICs perform with low dropout voltage and the chip-enable function. The supply current at no load of this IC is only 10μA, and the line transient response and the load transient response of the R1126N Series are excellent, thus these ICs are very suitable for the power supply for hand-held communication equipment.

The supply current at no load of R1126x Series is remarkably reduced compared with R1114x Series. The mode change signal to reduce the supply current is not necessary. The output voltage accuracy is also improved. (±1.5)"

The output voltage of these ICs is fixed with high accuracy. Since the package for these ICs is SOT-23-5 therefore high density mounting of the ICs on boards is possible.

R1116N Series that a pin configuration differs from R1126N Series are available.

FEATURES

- Low Supply Current ... Typ. 10μA
- Standby Current ... Typ. 0.1μA
- Input Voltage Range ... 1.8V to 6.0V
- Output Voltage Range ... 1.5V to 4.0V
- Low Dropout Voltage ... Typ. 0.29V (IOUT=150mA, VOUT=2.8V)
- High Ripple Rejection ... Typ. 70dB (f=1kHz, VOUT=3.0V)
- High Output Voltage Accuracy ... ±1.5% (1.5V ≤ VOUT ≤ 3.0V), ±2.0% (VOUT>3.0V)
- Low Temperature-Drift Coefficient of Output Voltage........ Typ. ±100ppm/°C
- Excellent Line Regulation ... Typ. 0.02%/V
- Small Packages ... SOT-23-5
- Built-in Fold Back Protection Circuit Typ. 40mA (Current at short mode)
- Ceramic capacitors are recommended to be used with this IC ... CIN=COUT=1.0μF (Ceramic)

APPLICATIONS

- Power source for portable communication equipment.
- Power source for portable music player.
- Power source for electrical appliances such as cameras, VCRs and camcorders.
- Power source for battery-powered equipment.
R1126N

BLOCK DIAGRAMS

R1126Nxx1B

R1126Nxx1D

VDD

GND

VOUT

CE

Vref

Current Limit

VDD

GND

VOUT

CE

Vref

Current Limit

SELECTION GUIDE

The output voltage, version, and the taping type for the ICs can be selected at the user’s request.
The selection can be made with designating the part number as shown below:

R1126Nxx1x-xx ← Part Number

a b c d

Code	Contents
a | Designation of Package Type:

N: SOT-23-5

b | Setting Output Voltage (V_{out}): Stepwise setting with a step of 0.1V in the range of 1.5V to 4.0V is possible.

Exceptions: 2.85V = R1126N281x5, 1.85V = R1126N181x5
c | Designation of Active Type:

B: active high type

D: active high, with auto discharge
d | Designation of Taping Type:

Ex. TR (refer to Taping Specifications; TR type is the standard direction.)
PIN CONFIGURATION

SOT-23-5

(mark side)

PIN DESCRIPTION

• R1126N

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CE</td>
<td>Chip Enable Pin</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground Pin</td>
</tr>
<tr>
<td>3</td>
<td>NC</td>
<td>No Connection</td>
</tr>
<tr>
<td>4</td>
<td>VOUT</td>
<td>Output pin</td>
</tr>
<tr>
<td>5</td>
<td>VDD</td>
<td>Input Pin</td>
</tr>
</tbody>
</table>

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN</td>
<td>Input Voltage</td>
<td>6.5</td>
<td>V</td>
</tr>
<tr>
<td>VCE</td>
<td>Input Voltage (CE Pin)</td>
<td>6.5</td>
<td>V</td>
</tr>
<tr>
<td>VOUT</td>
<td>Output Voltage</td>
<td>–0.3–Vin+0.3</td>
<td>V</td>
</tr>
<tr>
<td>IOUT</td>
<td>Output Current</td>
<td>160</td>
<td>mA</td>
</tr>
<tr>
<td>Po</td>
<td>Power Dissipation (SOT-23-5)</td>
<td>420</td>
<td>mW</td>
</tr>
<tr>
<td>Topt</td>
<td>Operating Temperature Range</td>
<td>–40–85</td>
<td>°C</td>
</tr>
<tr>
<td>Tstg</td>
<td>Storage Temperature Range</td>
<td>–55–125</td>
<td>°C</td>
</tr>
</tbody>
</table>

*) For Power Dissipation, please refer to PACKAGE INFORMATION to be described.
ELECTRICAL CHARACTERISTICS

- **R1126Nxx1B/D**

#### Symbol	Item	Conditions	\(V_{\text{OUT}} = \text{Set } V_{\text{OUT}} + 1 \text{V} \)	Min.	Typ.	Max.	Unit
\(V_{\text{OUT}} \) | Output Voltage | \(1 \text{mA} \leq I_{\text{OUT}} \leq 30 \text{mA} \) | \(0.985 \) × | 1.015 × | V
\(I_{\text{OUT}} \) | Output Current | \(V_{\text{IN}} - V_{\text{OUT}} = 1.0 \text{V} \) | 150 | mA

\(\Delta V_{\text{OUT}} / \Delta I_{\text{OUT}} \) | Load Regulation | \(V_{\text{IN}} = \text{Set } V_{\text{OUT}} + 1 \text{V} \) | 28 | 55 | mV
---|---|---|---|---|---|---|---
1mA ≤ | I_{\text{OUT}} ≤ 150mA | 33 | 66 |
1.5V ≤ | V_{\text{OUT}} ≤ 2.0V | 35 | 80 |
2.0V ≤ | V_{\text{OUT}} ≤ 3.0V | 3.0V ≤ | V_{\text{OUT}} |

\(V_{\text{DIFF}} \) | Dropout Voltage | Refer to the ELECTRICAL CHARACTERISTICS by OUTPUT VOLTAGE

\(I_{SS} \) | Supply Current | \(V_{\text{IN}} = \text{Set } V_{\text{OUT}} + 1 \text{V}, I_{\text{OUT}} = 0 \text{mA} \) | 10 | 18 | \(\mu \text{A} \)

\(I_{\text{STANDBY}} \) | Supply Current (Standby) | \(V_{\text{IN}} = \text{Set } V_{\text{OUT}} + 1 \text{V}, V_{\text{CE}} = V_{\text{DD}} \) | 0.1 | 1.0 | \(\mu \text{A} \)

\(\Delta V_{\text{OUT}} / \Delta V_{\text{IN}} \) | Line Regulation | \(I_{\text{OUT}} = 30 \text{mA} \) | 0.02 | 0.10 | %/V
---|---|---|---|---|---|---|---
Set \(V_{\text{OUT}} + 0.5 \text{V} \leq V_{\text{IN}} \leq 6.0 \text{V} \)

RR | Ripple Rejection | \(f=1 \text{kHz} \) | 70 | 53 | dB
---|---|---|---|---|---|---|---
\(f=10 \text{kHz} \) | Ripple 0.2Vp-p | \(V_{\text{IN}} = V_{\text{OUT}} = 1.0 \text{V}, I_{\text{OUT}} = 30 \text{mA} \)

\(V_{\text{IN}} \) | Input Voltage | 1.8 | 6.0 | V

\(\Delta V_{\text{OUT}} / \Delta T_{\text{OPT}} \) | Temperature Coefficient | \(I_{\text{OUT}} = 30 \text{mA} \) | ±100 | ppm | /°C
---|---|---|---|---|---|---|---
\(-40 \text{°C} \leq T_{\text{OPT}} \leq 85 \text{°C} \)

\(I_{\text{EM}} \) | Short Current Limit | \(V_{\text{OUT}} = 0 \text{V} \) | 40 | mA

\(I_{\text{PD}} \) | CE Pull-down Current | | 0.5 | \(\mu \text{A} \)

\(V_{\text{CEH}} \) | CE Input Voltage “H” | | 1.0 | 6.0 | V

\(V_{\text{CEL}} \) | CE Input Voltage “L” | | 0.0 | 0.3 | V

\(R_{\text{LOW}} \) | On Resistance of Nch Tr. for auto-discharge (Only for D version) | \(V_{\text{CE}} = 0 \text{V} \) | 70 | \(\Omega \)

Notes
- \(T_{\text{OPT}} = 25 \text{°C} \)
ELECTRICAL CHARACTERISTICS by OUTPUT VOLTAGE

<table>
<thead>
<tr>
<th>Output Voltage V_{OUT} (V)</th>
<th>Dropout Voltage V_{DF} (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td>Typ.</td>
</tr>
<tr>
<td>$V_{OUT} = 1.5V$</td>
<td>0.54</td>
</tr>
<tr>
<td>$1.5V < V_{OUT} \leq 1.6V$</td>
<td>0.50</td>
</tr>
<tr>
<td>$1.6V < V_{OUT} \leq 1.7V$</td>
<td>0.46</td>
</tr>
<tr>
<td>$1.7V < V_{OUT} \leq 2.0V$</td>
<td>0.44</td>
</tr>
<tr>
<td>$2.0V < V_{OUT} \leq 2.7V$</td>
<td>0.37</td>
</tr>
<tr>
<td>$2.7V < V_{OUT} \leq 4.0V$</td>
<td>0.29</td>
</tr>
</tbody>
</table>

$\text{Topt} = 25^\circ\text{C}$

TYPICAL APPLICATIONS

(External Components)

- C_2 Ceramic 1.0μF Ex. Murata GRM155B30J105KE18B
 Kyocera CM05X5R105K06AB
- C_1 Ceramic 1.0μF
TEST CIRCUITS

![Standard Test Circuit](image1)

C1=Ceramic 1.0μF
C2=Ceramic 1.0μF

Fig.1 Standard test Circuit

![Supply Current Test Circuit](image2)

C1=Ceramic 1.0μF
C2=Ceramic 1.0μF

Fig.2 Supply Current Test Circuit

![Ripple Rejection, Line Transient Response Test Circuit](image3)

C2=Ceramic 1.0μF

Fig.3 Ripple Rejection, Line Transient Response Test Circuit
TYPICAL CHARACTERISTICS

1) Output Voltage vs. Output Current (Topt=25°C)

R1126N151x

R1126N281x

R1126N401x

2) Output Voltage vs. Input Voltage (Topt=25°C)

R1126N151x

R1126N281x
3) Supply Current vs. Input Voltage (Topt=25°C)
4) Output Voltage vs. Temperature

- R1126N151x
- R1126N281x
- R1126N401x

5) Supply Current vs. Temperature

- R1126N151x
- R1126N281x
6) Dropout Voltage vs. Temperature

R1126N151x

- Dropout Voltage VDIF (mV)
- Output Current IOUT (mA)

R1126N161x

- Dropout Voltage VDIF (mV)
- Output Current IOUT (mA)

R1126N171x

- Dropout Voltage VDIF (mV)
- Output Current IOUT (mA)

R1126N181x

- Dropout Voltage VDIF (mV)
- Output Current IOUT (mA)
7) Dropout Voltage vs. Set Output Voltage (Topt=25°C)
8) Ripple Rejection vs. Input Bias Voltage (Topt=25°C, CIN = none, Cout = 1μF)

R1126N281x

Ripple Vp-p=0.2V, Iout=1mA

Ripple Vp-p=0.5V, Iout=1mA

R1126N281x

Ripple Vp-p=0.2V, Iout=30mA

Ripple Vp-p=0.5V, Iout=30mA

R1126N281x

Ripple Vp-p=0.2V, Iout=50mA

Ripple Vp-p=0.5V, Iout=50mA
9) Ripple Rejection vs. Frequency (C_{in}=none)

R1126N151x

- $V_{IN}=2.7\,V_{DC}+0.5\,V_{p-p}, C_{OUT}=1\,\mu F$

R1126N281x

- $V_{IN}=3.8\,V_{DC}+0.5\,V_{p-p}, C_{OUT}=1\,\mu F$

R1126N401x

- $V_{IN}=5\,V_{DC}+0.5\,V_{p-p}, C_{OUT}=1\,\mu F$

- $I_{OUT}=1\,mA$
- $I_{OUT}=30\,mA$
- $I_{OUT}=50\,mA$
- $I_{OUT}=150\,mA$

R1126N151x

- $V_{IN}=2.7\,V_{DC}+0.5\,V_{p-p}, C_{OUT}=2.2\,\mu F$

R1126N281x

- $V_{IN}=3.8\,V_{DC}+0.5\,V_{p-p}, C_{OUT}=2.2\,\mu F$

R1126N401x

- $V_{IN}=5\,V_{DC}+0.5\,V_{p-p}, C_{OUT}=2.2\,\mu F$

- $I_{OUT}=1\,mA$
- $I_{OUT}=30\,mA$
- $I_{OUT}=50\,mA$
- $I_{OUT}=150\,mA$
10) Input Transient Response (I_{OUT}=30mA, C_{IN}= none, t_{r}=t_{f}=5\mu s, C_{OUT}= Ceramic 1\mu F)

R1126N151x

R1126N281x

R1126N401x

11) Load Transient Response (t_{r}=t_{f}=0.5\mu s, C_{IN}=Ceramic 1\mu F)

R1126N151x

\(V_{IN}=2.5V, C_{OUT}=Ceramic 1.0\mu F\)

R1126N151x

\(V_{IN}=2.5V, C_{OUT}=Ceramic 2.2\mu F\)
R1126N

12) Turn-on/off speed with CE pin (D version) (C\textsubscript{IN}=Ceramic 1.0\,\mu\text{F}, C\text{OUT}=Ceramic 1.0\,\mu\text{F})

\begin{align*}
\text{R1126N401x} & \\
V_{IN}=5.0\,V, C\text{OUT}=\text{Ceramic 1.0}\,\mu\text{F} & \\
\text{Output Voltage V\textsubscript{OUT}(V)} & \\
\text{Output Current I\textsubscript{OUT}(mA)} & \\
\text{Time t(\mu s)} & \\
\end{align*}

\begin{align*}
\text{R1126N401x} & \\
V_{IN}=5.0\,V, C\text{OUT}=\text{Ceramic 2.2}\,\mu\text{F} & \\
\text{Output Voltage V\textsubscript{OUT}(V)} & \\
\text{Output Current I\textsubscript{OUT}(mA)} & \\
\text{Time t(\mu s)} & \\
\end{align*}

\begin{align*}
\text{R1126N401x} & \\
V_{IN}=5.0\,V, C\text{OUT}=\text{Ceramic 1.0}\,\mu\text{F} & \\
\text{Output Voltage V\textsubscript{OUT}(V)} & \\
\text{Output Current I\textsubscript{OUT}(mA)} & \\
\text{Time t(\mu s)} & \\
\end{align*}

\begin{align*}
\text{R1126N401x} & \\
V_{IN}=5.0\,V, C\text{OUT}=\text{Ceramic 2.2}\,\mu\text{F} & \\
\text{Output Voltage V\textsubscript{OUT}(V)} & \\
\text{Output Current I\textsubscript{OUT}(mA)} & \\
\text{Time t(\mu s)} & \\
\end{align*}

\begin{align*}
\text{R1126N151D} & \\
V_{IN}=2.5\,V & \\
\text{CE Input Voltage V\textsubscript{CE}(V)} & \\
\text{Output Voltage V\textsubscript{OUT}(V)} & \\
\text{Time t(\mu s)} & \\
\end{align*}

\begin{align*}
\text{R1126N151D} & \\
V_{IN}=2.5\,V & \\
\text{CE Input Voltage V\textsubscript{CE}(V)} & \\
\text{Output Voltage V\textsubscript{OUT}(V)} & \\
\text{Time t(\mu s)} & \\
\end{align*}
TECHNICAL NOTES

(External Components)
C2 Ceramic 1.0μF Ex. Murata GRM155B30J105KE18B
 Kyocera CM05X5R105K06AB
C1 Ceramic 1.0μF

When using these ICs, consider the following points:

1. Mounting on PCB
 Make VDD and GND lines sufficient. If their impedance is high, noise pickup or unstable operation may result.
 Connect a capacitor with a capacitance value as much as 1.0μF or more as C1 between VDD and GND pin, and
 as close as possible to the pins.
 Set external components, especially the output capacitor, as close as possible to the ICs, and make wiring as
 short as possible.

2. Phase Compensation
 In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For
 this purpose, use a capacitor C2 with good frequency characteristics and ESR (Equivalent Series Resistance).
 (Note: If additional ceramic capacitors are connected with parallel to the output pin with an output capacitor for
 phase compensation, the operation might be unstable. Because of this, test these ICs with as same external
 components as ones to be used on the PCB.)

 If you use a tantalum type capacitor and ESR value of the capacitor is large, output might be unstable.
 Evaluate your circuit with considering frequency characteristics.
 Depending on the capacitor size, manufacturer, and part number, the bias characteristics and temperature
 characteristics are different. Evaluate the circuit with actual using capacitors.
ESR vs. Output Current

When using these ICs, consider the following points:

The relations between I_{OUT} (Output Current) and ESR of an output capacitor are shown below. The conditions when the white noise level is under $40\mu\text{V}$ (Avg.) are marked as the hatched area in the graph.

Measurement conditions

$V_{\text{IN}} = V_{\text{OUT}} + 1\text{V}$

C_{OUT}: GRM155B30J105KE18B

Frequency Band: 10Hz to 2MHz

Temperature: $-40\degree\text{C}$ to $25\degree\text{C}$
1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh’s or any third party’s intellectual property rights or any other rights.
5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, firecontainment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
7. Anti-radiation design is not implemented in the products described in this document.
8. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

RICOH COMPANY, LTD. Electronic Devices Company

http://www.ricoh.com/LSI/

Ricoh presented with the Japan Management Quality Award for 1999.
Ricoh continually strives to promote customer satisfaction, and shares the achievements of its management quality improvement program with people and society.

Ricoh awarded ISO 14001 certification.
The Ricoh Group was awarded ISO 14001 certification, which is an international standard for environmental management systems, at both its domestic and overseas production facilities. Our current aim is to obtain ISO 14001 certification for all of our business offices.

RoHS Compliant
Ricoh completed the organization of the Lead-free production for all of our products. After Apr. 1, 2006, we will ship out the lead free products only. Thus, all products that will be shipped from now on comply with RoHS Directive.

RICOH ELECTRONIC DEVICES KOREA Co., Ltd.
11 floor, Haesung 1 building, 942, Daechidong, Gangnamgu, Seoul, Korea
Phone: +82-2-2135-6700 Fax: +82-2-2135-6705

RICOH ELECTRONIC DEVICES SHANGHAI Co., Ltd.
Room402, No.2 Building, 6504B Bu Road, Pu Dong New district, Shanghai 201203, People's Republic of China
Phone: +86-21-5027-3289

RICOH COMPANY, LTD.
Electronic Devices Company
Taipei office
Room109, 10F-1, No.51, Hengyang Rd, Taipei City, Taiwan (R.O.C.)
Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623