OUTLINE

The R1282D002A is a CMOS-based 2-channel PWM Step-up (as Channel 1)/Step-down (as Channel 2) DC/DC converter controller.

The R1282D002A consists of an oscillator, a PWM control circuit, a reference voltage unit, an error amplifier, a reference current unit, a protection circuit, and an under voltage lockout (UVLO) circuit. A high efficiency Step-up/Step-down DC/DC converter can be composed of this IC with inductors, diodes, power MOSFETs, resistors, and capacitors. Each output voltage and maximum duty cycle can be adjustable with external resistors, while soft-start time can be adjustable with external capacitors and resistors.

As for a protection circuit, if Maximum duty cycle of either Step-up DC/DC converter side or Step-down DC/DC converter side is continued for a certain time, the R1280D002A latches both external drivers with their off state by its Latch-type protection circuit. Delay time for protection is internally fixed typically at 100ms. To release the protection circuit, restart with power-on (Voltage supplier is equal or less than UVLO detector threshold level).

FEATURES

- Input Voltage Range ..2.5V to 5.5V
- Built-in Latch-type Protection Function by monitoring duty cycle (Fixed Delay Time Typ. 100ms)
- Oscillator Frequency700kHz
- High Accuracy Voltage Reference±1.5%
- U.V.L.O. Threshold ...Typ. 2.2V (Hysteresis: Typ. 0.2V)
- Small Package ..thin SON-10 (package thickness Max. 0.9mm)

APPLICATIONS

- Constant Voltage Power Source for Portable Equipment.
- Constant Voltage Power Source for LCD and CCD.
BLOCK DIAGRAM

SELECTION GUIDE

The selection can be made with designating the part number as shown below;

R1282D002A-TR ← Part Number

<table>
<thead>
<tr>
<th>Code</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Designation of Taping Type:</td>
</tr>
<tr>
<td></td>
<td>(Refer to Taping Specifications.)</td>
</tr>
</tbody>
</table>
PIN CONFIGURATION

● SON-10

PIN DESCRIPTION

<table>
<thead>
<tr>
<th>Pin No</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EXT1</td>
<td>External Transistor of Channel 1 Drive Pin (CMOS Output)</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground Pin</td>
</tr>
<tr>
<td>3</td>
<td>AMPOUT1</td>
<td>Amplifier Output Pin of Channel 1</td>
</tr>
<tr>
<td>4</td>
<td>DTC1</td>
<td>Maximum Duty Cycle of Channel 1 Setting Pin</td>
</tr>
<tr>
<td>5</td>
<td>VFB1</td>
<td>Feedback pin of Channel 1</td>
</tr>
<tr>
<td>6</td>
<td>VFB2</td>
<td>Feedback pin of Channel 2</td>
</tr>
<tr>
<td>7</td>
<td>DTC2</td>
<td>Maximum Duty Cycle of Channel 2 Setting Pin</td>
</tr>
<tr>
<td>8</td>
<td>Vrefout</td>
<td>Reference Output Pin</td>
</tr>
<tr>
<td>9</td>
<td>VIN</td>
<td>Voltage Supply Pin of the IC</td>
</tr>
<tr>
<td>10</td>
<td>EXT2</td>
<td>External Transistor of Channel 2 Drive Pin (CMOS Output)</td>
</tr>
</tbody>
</table>

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN</td>
<td>VIN Pin Voltage</td>
<td>6.5</td>
<td>V</td>
</tr>
<tr>
<td>VEXT1,2</td>
<td>VEXT1,2 Pin Output Voltage</td>
<td>−0.3~VIN+0.3</td>
<td>V</td>
</tr>
<tr>
<td>VAMPOUT1</td>
<td>AMPOUT1 Pin Voltage</td>
<td>−0.3~VIN+0.3</td>
<td>V</td>
</tr>
<tr>
<td>VDTC1,2</td>
<td>DTC1,2 Pin Voltage</td>
<td>−0.3~VIN+0.3</td>
<td>V</td>
</tr>
<tr>
<td>Vrefout</td>
<td>VREFOUT Pin Voltage</td>
<td>−0.3~VIN+0.3</td>
<td>V</td>
</tr>
<tr>
<td>VFB1,2</td>
<td>VFB1, VFB2 Pin Voltage</td>
<td>−0.3~VIN+0.3</td>
<td>V</td>
</tr>
<tr>
<td>IEXT1,2</td>
<td>EXT1,2 Pin Output Current</td>
<td>±50</td>
<td>mA</td>
</tr>
<tr>
<td>PO</td>
<td>Power Dissipation</td>
<td>250</td>
<td>mW</td>
</tr>
<tr>
<td>Topt</td>
<td>Operating Temperature Range</td>
<td>−40 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>Tstg</td>
<td>Storage Temperature Range</td>
<td>−55 to +125</td>
<td>°C</td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>Operating Input Voltage</td>
<td>$V_{IN}=3.3V$, $I_{OUT}=1mA$</td>
<td>2.5</td>
<td>5.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{REFOUT}</td>
<td>V_{REFOUT} Voltage Tolerance</td>
<td>$V_{IN}=3.3V$, $I_{OUT}=1mA$</td>
<td>1.478</td>
<td>1.500</td>
<td>1.522</td>
<td>V</td>
</tr>
<tr>
<td>I_{OUT}</td>
<td>V_{REFOUT} Output Current</td>
<td>$V_{IN}=3.3V$</td>
<td>20</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>$\Delta V_{REFOUT}/\Delta V_{IN}$</td>
<td>V_{REFOUT} Line Regulation</td>
<td>$2.5V \leq V_{IN} \leq 5.5V$</td>
<td>2</td>
<td>6</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>I_{LIM}</td>
<td>V_{REFOUT} Short Current Limit</td>
<td>$V_{IN}=3.3V$, $V_{REFOUT}=0V$</td>
<td>25</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>$\Delta V_{REFOUT}/\Delta T$</td>
<td>V_{REFOUT} Voltage Temperature Coefficient</td>
<td>$-40^\circ C \leq Topt \leq 85^\circ C$</td>
<td></td>
<td></td>
<td></td>
<td>ppm/°C</td>
</tr>
<tr>
<td>V_{FB1}</td>
<td>V_{FB1} Voltage</td>
<td>$V_{IN}=3.3V$</td>
<td>0.985</td>
<td>1.000</td>
<td>1.015</td>
<td>V</td>
</tr>
<tr>
<td>$\Delta V_{FB1}/\Delta T$</td>
<td>V_{FB1} Voltage Temperature Coefficient</td>
<td>$-40^\circ C \leq Topt \leq 85^\circ C$</td>
<td></td>
<td></td>
<td></td>
<td>ppm/°C</td>
</tr>
<tr>
<td>$\Delta V_{FB2}/\Delta T$</td>
<td>V_{FB2} Voltage Temperature Coefficient</td>
<td>$-40^\circ C \leq Topt \leq 85^\circ C$</td>
<td></td>
<td></td>
<td></td>
<td>ppm/°C</td>
</tr>
<tr>
<td>I_{I01}</td>
<td>Supply Current</td>
<td>$V_{IN}=5.5V$, $EXT1,2$ pins at no load</td>
<td>1.4</td>
<td>3.0</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>R_{E1TH1}</td>
<td>EXT1 "H" ON Resistance</td>
<td>$V_{IN}=3.3V$, $I_{EXT}=20mA$</td>
<td>4.0</td>
<td>8.0</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>R_{E1TL1}</td>
<td>EXT1 "L" ON Resistance</td>
<td>$V_{IN}=3.3V$, $I_{EXT}=20mA$</td>
<td>2.7</td>
<td>5.0</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>R_{E1TH2}</td>
<td>EXT2 "H" ON Resistance</td>
<td>$V_{IN}=3.3V$, $I_{EXT}=20mA$</td>
<td>4.0</td>
<td>8.0</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>R_{E1TL2}</td>
<td>EXT2 "L" ON Resistance</td>
<td>$V_{IN}=3.3V$, $I_{EXT}=20mA$</td>
<td>3.7</td>
<td>8.0</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>T_{DLY}</td>
<td>Delay Time for Protection</td>
<td>$V_{IN}=3.3V$, $V_{FB1}=1.1V\rightarrow0V$</td>
<td>60</td>
<td>100</td>
<td>140</td>
<td>ms</td>
</tr>
<tr>
<td>V_{UVLO}</td>
<td>UVLO Released Voltage</td>
<td></td>
<td>2.10</td>
<td>2.20</td>
<td>2.35</td>
<td>V</td>
</tr>
<tr>
<td>V_{UVLO}</td>
<td>UVLO Released Voltage</td>
<td>$V_{IN}=3.3V$, $EXT1,2$ pins at no load</td>
<td></td>
<td></td>
<td>2.48</td>
<td>V</td>
</tr>
<tr>
<td>V_{DTC10}</td>
<td>CH1 Duty=0%</td>
<td>$V_{IN}=3.3V$</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>V</td>
</tr>
<tr>
<td>V_{DTC100}</td>
<td>CH1 Duty=100%</td>
<td>$V_{IN}=3.3V$</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
<td>V</td>
</tr>
<tr>
<td>V_{DTC20}</td>
<td>CH2 Duty=0%</td>
<td>$V_{IN}=3.3V$</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>V</td>
</tr>
<tr>
<td>V_{DTC200}</td>
<td>CH2 Duty=100%</td>
<td>$V_{IN}=3.3V$</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
<td>V</td>
</tr>
<tr>
<td>A_{V1}</td>
<td>CH1 Open Loop Gain</td>
<td>$V_{IN}=3.3V$, $A_{V1}=0dB$</td>
<td>1.9</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>F_{11}</td>
<td>CH1 Single Gain Frequency Band</td>
<td>$V_{IN}=3.3V$</td>
<td></td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>V_{ICR1}</td>
<td>CH1 Input Voltage Range</td>
<td>$V_{IN}=3.3V$</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_{AMPL}</td>
<td>CH1 Sink Current</td>
<td>$V_{IN}=3.3V$, $V_{AMPOUT}=1.0V$, $V_{FB1}=V_{FB1}+0.1V$</td>
<td>70</td>
<td>115</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>I_{AMPH}</td>
<td>CH1 Source Current</td>
<td>$V_{IN}=3.3V$, $V_{AMPOUT}=1.0V$, $V_{FB1}=V_{FB1}-0.1V$</td>
<td>-1.4</td>
<td>-0.7</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>A_{V2}</td>
<td>CH2 Open Loop Gain</td>
<td>$V_{IN}=3.3V$</td>
<td>60</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>F_{12}</td>
<td>CH2 Single Gain Frequency Band</td>
<td>$V_{IN}=3.3V$, $A_{V2}=0dB$</td>
<td>600</td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>V_{ICR2}</td>
<td>CH2 Input Voltage Range</td>
<td>$V_{IN}=3.3V$</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{FB2}</td>
<td>CH2 Reference Voltage</td>
<td>$V_{IN}=3.3V$</td>
<td>0.985</td>
<td>1.000</td>
<td>1.015</td>
<td>V</td>
</tr>
</tbody>
</table>
Operation of Step-up DC/DC Converter and Output Current

Step-up DC/DC Converter makes higher output voltage than input voltage by releasing the energy accumulated during on time of Lx Transistor on input voltage.

Step 1. Lx Tr. is on, then the current i_1 flows, and the energy is charged in L. In proportion to the on time of Lx Tr. (T_{on}), i_1 increases from $i_{Lx,min}=0$ and reaches $i_{Lx,max}$.

Step 2. When the Lx Tr. is off, L turns on Schottky Diode (SD), and i_2 flows to maintain $i_L=i_{Lx,max}$.

Step 3. i_2 gradually decreases, and after T_f passes, $i_{Lx,min}=0$ is true, then SD turns off. Note that in the case of the continuous mode, before $i_{Lx,min}=0$ is true, T_{off} passes, and the next cycle starts, then Lx Tr. turns on again.

In this case, $i_{Lx,min}>0$, therefore $i_L=i_{Lx,min}>0$ is another starting point and $i_{Lx,max}$ increases.

With the PWM controller, switching times during the time unit are fixed. By controlling T_{on}, output voltage is maintained.
Output Current and Selection of External Components

Output Current of Step-up Circuit and External Components

There are two modes, or discontinuous mode and continuous mode for the PWM step-up switching regulator depending on the continuous characteristic of inductor current.

During on time of the transistor, when the voltage added on to the inductor is described as \(V_{IN}\), the current is \(V_{IN} \times t/L\).

Therefore, the electric power, \(P_{ON}\), which is supplied with input side, can be described as in next formula.

\[
P_{ON} = \int_{0}^{T_{on}} V_{IN}^2 \times t/L \, dt \ 	ext{..Formula 1}
\]

With the step-up circuit, electric power is supplied from power source also during off time. In this case, input current is described as \((V_{OUT} - V_{IN}) \times t/L\), therefore electric power, \(P_{OFF}\) is described as in next formula.

\[
P_{OFF} = \int_{0}^{T_{off}} V_{IN} \times (V_{OUT} - V_{IN})t/L \, dt \ 	ext{..Formula 2}
\]

In this formula, \(T_f\) means the time of which the energy saved in the inductance is being emitted. Thus average electric power, \(P_{AV}\) is described as in the next formula.

\[
P_{AV} = 1/(T_{on} + T_{off}) \times \left\{ \int_{0}^{T_{on}} V_{IN}^2 \times t/L \, dt + \int_{0}^{T_{off}} V_{IN} \times (V_{OUT} - V_{IN})t/L \, dt \right\} \ 	ext{..Formula 3}
\]

In PWM control, when \(T_f = T_{off}\) is true, the inductor current becomes continuous, then the operation of switching regulator becomes continuous mode.

In the continuous mode, the deviation of the current is equal between on time and off time.

\[
I_{ON} = (V_{OUT} - V_{IN}) \times T_{off}/L \ 	ext{..Formula 4}
\]

Further, the electric power, \(P_{AV}\) is equal to output electric power, \(V_{OUT} \times I_{OUT}\), thus,

\[
I_{OUT} = f_{OSC} \times V_{IN}^2 \times T_{on}^2/(2 \times L \times (V_{OUT} - V_{IN})) = V_{IN}^2 \times T_{on}/(2 \times L \times V_{OUT}) \ 	ext{..Formula 5}
\]

When \(I_{OUT}\) becomes more than \(V_{IN} \times T_{on} \times T_{off}/(2 \times L \times (T_{on} + T_{off}))\), the current flows through the inductor, then the mode becomes continuous. The continuous current through the inductor is described as \(I_{const}\), then,

\[
I_{OUT} = f_{OSC} \times V_{IN}^2 \times T_{on}^2/(2 \times L \times (V_{OUT} - V_{IN})) + V_{IN} \times I_{const}/V_{OUT} \ 	ext{..Formula 6}
\]
In this moment, the peak current, $I_{LX\text{max}}$ flowing through the inductor and the driver $Tr.$ is described as follows:

$$I_{LX\text{max}} = I_{\text{const}} + V_{IN} \times \frac{Ton}{L}$$

Formula 7

With the formula 4, 6, and $I_{LX\text{max}}$ is,

$$I_{LX\text{max}} = \frac{V_{OUT}}{V_{IN}} \times I_{OUT} + V_{IN} \times \frac{Ton}{(2 \times L)}$$

Formula 8

Therefore, peak current is more than I_{OUT}. Considering the value of $I_{LX\text{max}}$, the condition of input and output, and external components should be selected.

In the formula 7, peak current $I_{LX\text{max}}$ at discontinuous mode can be calculated. Put $I_{\text{const}} = 0$ in the formula.

The explanation above is based on the ideal calculation, and the loss caused by L_X switch and external components is not included. The actual maximum output current is between 50% and 80% of the calculation. Especially, when the I_{LX} is large, or V_{IN} is low, the loss of V_{IN} is generated with the on resistance of the switch. As for V_{OUT}, V_f (as much as 0.3V) of the diode should be considered.
Operation of Inverting DC/DC converter and Output Current

The step-down DC/DC converter charges energy in the inductor when Lx transistor is ON, and discharges the energy from the inductor when Lx transistor is OFF and controls with less energy loss, so that a lower output voltage than the input voltage is obtained. The operation will be explained with reference to the following diagrams:

<Basic Circuits>

Step 1. Lx Tr. turns on and current IL (\(=i_1\)) flows, and energy is charged into CL. At this moment, IL increases from ILmin. (\(=0\)) to reach ILmax. in proportion to the on-time period\((ton)\) of LX Tr.

Step 2. When Lx Tr. turns off, Schottky diode (SD) turns on in order that L maintains IL at ILmax, and current IL \(=i_2\) flows.

Step 3. IL decreases gradually and reaches ILmin. after a time period of topen, and SD turns off, provided that in the continuous mode, next cycle starts before IL becomes to 0 because toff time is not enough. In this case, IL value is from this ILmin \((>0)\).

In the case of PWM control system, the output voltage is maintained by controlling the on-time period \((ton)\), with the oscillator frequency \((fosc)\) being maintained constant.

Discontinuous Conduction Mode and Continuous Conduction Mode

The maximum value \((IL_{max})\) and the minimum value \((IL_{min})\) current which flow through the inductor is the same as those when Lx Tr. is ON and when it is OFF.

The difference between ILmax and ILmin, which is represented by \(\Delta I\);

\[
\Delta I = IL_{max} - IL_{min} = V_{OUT} \times \text{topen} / L = (V_{IN} - V_{OUT}) \times \text{ton} / L \cdot \cdot \cdot \text{Equation A}
\]

wherein, \(T=1/fosc=\text{ton}+\text{toff}\)

duty \((\%)=\text{ton}/T \times 100=\text{ton} \times fosc \times 100\)

topen \(\leq\) toff

In Equation A, \(V_{OUT} \times \text{topen} / L\) and \((V_{IN} - V_{OUT}) \times \text{ton} / L\) are respectively shown the change of the current at ON, and the change of the current at OFF.

When the output current \((I_{OUT})\) is relatively small, topen < toff as illustrated in the above diagram. In this case, the energy is charged in the inductor during the time period of ton and is discharged in its entirely during the time period of toff, therefore ILmin becomes to zero \((IL_{min}=0)\). When Iout is gradually increased, eventually, topon becomes to toff \((\text{topen} = \text{toff})\), and when IOUT is further increased, ILmin becomes larger than zero \((IL_{min}>0)\). The former mode is referred to as the discontinuous mode and the latter mode is referred to as continuous mode.

In the continuous mode, when Equation A is solved for ton and assumed that the solution is tonc,

\[
\text{tonc}=T \times V_{OUT}/V_{IN} \cdot \cdot \cdot \text{Equation B}
\]

When ton<tonc, the mode is the discontinuous mode, and when ton=tonc, the mode is the continuous mode.
Output Current and Selection of External Components

There are also two modes, or discontinuous mode and continuous mode for the PWM step-down switching regulator depending on the continuous characteristic of inductor current.

During on time of the transistor, when the voltage added on to the inductor is described as \(V_{\text{IN}} - V_{\text{OUT}} \) the current is \((V_{\text{IN}} - V_{\text{OUT}}) \times t/L \).

Therefore, the electric power, \(P \), which is supplied from the input side, can be described as in next formula.

\[
P = \int_{0}^{T_{\text{on}}} V_{\text{IN}} \cdot (V_{\text{IN}} - V_{\text{OUT}}) \cdot t/L \, dt
\]

Thus average electric power in one cycle, \(P_{AV} \) is described as in the next formula.

\[
P_{AV} = \frac{1}{T_{\text{on}}+T_{\text{off}}} \int_{0}^{T_{\text{on}}} V_{\text{IN}} \cdot (V_{\text{IN}} - V_{\text{OUT}}) \cdot t/L \, dt = \frac{V_{\text{IN}} \cdot (V_{\text{IN}} - V_{\text{OUT}}) \cdot T_{\text{on}}}{2 \cdot L \cdot (T_{\text{on}} + T_{\text{off}})} \]

This electric power \(P_{AV} \) equals to output electric power \(V_{\text{OUT}} \times I_{\text{OUT}} \), thus,

\[
I_{\text{OUT}} = \frac{V_{\text{IN}}}{V_{\text{OUT}}} \cdot (V_{\text{IN}} - V_{\text{OUT}}) \cdot T_{\text{off}} / (2 \times L \times (T_{\text{on}} + T_{\text{off}}))
\]

When \(I_{\text{OUT}} \) increases and the current flows through the inductor continuously, then the mode becomes continuous. In the continuous mode, the deviation of the current equals between \(T_{\text{on}} \) and \(T_{\text{off}} \), therefore,

\[
(V_{\text{IN}} - V_{\text{OUT}}) \times T_{\text{on}} / L = V_{\text{OUT}} \times T_{\text{off}} / L
\]

In this moment, the current flowing continuously through \(L \), is assumed as Iconst, \(I_{\text{OUT}} \) is described as in the next formula:

\[
I_{\text{OUT}} = I_{\text{const}} + V_{\text{OUT}} \times T_{\text{off}} / (2 \times L)
\]

In this moment, the peak current, \(I_{\text{LXmax}} \) flowing through the inductor and the driver \(T_{r} \) is described as follows:

\[
I_{\text{LXmax}} = I_{\text{OUT}} + V_{\text{OUT}} \times T_{\text{off}} / (2 \times L)
\]

With the formula 12, 13, \(I_{\text{LXmax}} \) is,

\[
T_{\text{off}} = (1 - V_{\text{OUT}} / V_{\text{IN}}) / f_{\text{osc}}
\]

Therefore, peak current is more than \(I_{\text{OUT}} \). Considering the value of \(I_{\text{LXmax}} \), the condition of input and output, and external components should be selected.

In the formula 14, peak current \(I_{\text{LXmax}} \) at discontinuous mode can be calculated. Put \(I_{\text{const}} = 0 \) in the formula.

The explanation above is based on the ideal calculation, and the loss caused by \(L_{\text{x}} \) switch and external components is not included.
TEST CIRCUITS

Test Circuit 1

Test Circuit 2

Test Circuit 3

Test Circuit 4

Test Circuit 5

Test Circuit 6

Limited Product
Typical Characteristics shown in the following pages are obtained with test circuits shown above.

Test Circuit 1,2 : Typical Characteristic 4)
Test Circuit 3 : Typical Characteristic 5)
Test Circuit 4 : Typical Characteristic 5)
Test Circuit 5 : Typical Characteristic 6)
Test Circuit 6 : Typical Characteristics 7) 8)
Test Circuit 7 : Typical Characteristic 9)
Test Circuit 8 : Typical Characteristic 10)
Test Circuit 9 : Typical Characteristics 10)
Test Circuit 10 : Typical Characteristics 11) 12)

Note) Capacitors’ values of test circuits
Capacitors: Ceramic Type:
C1=4.7μF, C2=1.0μF

Efficiency η(%) can be calculated with the next formula:
\[η = \frac{(V_{out1} \times I_{out1} + V_{out2} \times I_{out2})}{(V_{in} \times I_{in})} \times 100 \]
TYPICAL CHARACTERISTICS

1) Output Voltage vs. Output Current (Topt=25°C)

R1282D002A

\[V_{\text{out}}(V) = 10.00 + 0.05 \times I_{\text{out}}(mA) \]

\[V_{\text{out}}(V) = 10.05 + 0.05 \times I_{\text{out}}(mA) \]

\[V_{\text{out}}(V) = 10.10 + 0.05 \times I_{\text{out}}(mA) \]

VIN=2.8V, VIN=3.3V, VIN=5.5V

L1=6.8μH, C1=10μF, VOUT2=2.5V, IOUT2=0mA

2) Efficiency vs. Output Current (VIN=3.3V, Topt=25°C)

R1282D002A

\[\text{Efficiency} = 90 \% - 0.5 \times I_{\text{out}}(mA) \]

\[\text{Efficiency} = 80 \% - 0.5 \times I_{\text{out}}(mA) \]

\[\text{Efficiency} = 70 \% - 0.5 \times I_{\text{out}}(mA) \]

VOUT1=5V, VOUT1=10V, VOUT1=15V

L2=6.8μH, C2=10μF, VOUT2=2.5V, IOUT2=0mA

3) Output Voltage vs. Temperature (VIN=3.3V)

R1282D002A

\[V_{\text{out}}(V) = 10.00 - 0.01 \times T_{\text{opt}}(°C) \]

\[V_{\text{out}}(V) = 10.05 - 0.01 \times T_{\text{opt}}(°C) \]

\[V_{\text{out}}(V) = 10.10 - 0.01 \times T_{\text{opt}}(°C) \]

IOUT=10mA, IOUT=100mA, IOUT=200mA

L1=6.8μH, C1=10μF

L2=6.8μH, C2=10μF, VOUT2=10V, IOUT2=0mA
4) Frequency vs. Temperature

5) Feedback Voltage vs. Temperature (Vin=3.3V)

6) Vrefout Voltage vs. Temperature (Vin=3.3V)

7) Vrefout Output Voltage vs. Output Current
8) Vrefout Output Voltage vs. Output Current

9) Protection Delay Time vs. Temperature (V\text{IN}=3.3\text{V})

10) Maximum Duty Cycle vs. DTC Voltage (V\text{IN}=3.3\text{V})

11) Output Sink Current vs. Temperature (V\text{IN}=3.3\text{V})

12) Output Source Current vs. Temperature
13) Load Transient Response (Step-up Side) $V_{IN}=3.3V$, $L_1=6.8\mu H$

14) Load Transient Response (Step-down Side) $V_{IN}=3.3V$, $L_2=6.8\mu H$
TYPICAL APPLICATION AND TECHNICAL NOTES

Components examples
- Inductor L1,2: 6.8μH LDR655312T (TDK)
- Diode: FS1J3 (Origin Electronics)
- PMOS: Si3443DV (Siliconix)
- NMOS: IRF7601 (International Rectifier)
- Resistance: As setting resistors total value for the output voltage, R1+R2, R3+R4 recommendation value is 100kΩ or less.
 - R1=47kΩ
 - R2=5.1kΩ
 - R3=30kΩ
 - R4=20kΩ
 - R5=43kΩ
 - R6=10kΩ
 - R7=R9=22kΩ
 - R8=R10=43kΩ
 - R11=220kΩ
- Capacitors: Ceramic Type
 - C1=C2=10μF
 - C3=4.7μF
 - C4=0.22μF
 - C5=0.47μF
 - C6=120pF
 - C7=50pF
 - C8=1μF
 - C9=1000pF

Note) Consider the ratings of external components including voltage tolerance. With the transistor in the circuit above, V_{OUT}=15V is the voltage setting limit.
EXTERNAL COMPONENTS

1. How to set the output voltages
 As for step-up side, feedback (V_{FB1}) pin voltage is controlled to maintain 1V, therefore,

 $$V_{OUT1} = \frac{R1}{R1+R2} \times V_{FB1}$$

 Thus, $V_{OUT1} = \frac{V_{FB1} \times (R1+R2)}{R2}$

 Output Voltage is adjustable with R1 and R2.
 As for Step-down side, Feedback (V_{FB2}) pin voltage follows the next formula,

 $$V_{OUT2} = \frac{R3}{R3+R4} \times V_{FB2}$$

 Thus, $V_{OUT2} = \frac{V_{FB2} \times (R3+R4)}{R4}$

 Output Voltage is adjustable with R3 and R4.

2. How to set Soft-Start Time and Maximum Duty Cycle
 Soft-start time is adjustable with connecting resistors and a capacitor to DTC pin.
 Soft starting time, T_{SS1} and T_{SS2} are adjustable. Soft-start time can be set with the time constant of RC.
 Soft-start time can be described as in next formula.

 $$T_{SS1} \approx R0 \times C4$$

 If $R10 = 0 \Omega$, then,

 $$T_{SS2} \approx R9 \times C5 \times \ln\left(\frac{V_{refout} - V_{DTC2}}{V_{refout}}\right)$$

 Maximum Duty Cycle is set with the voltage to DTC1 and DTC2.
 Maximum duty cycle is described as follows;
 CH1 (Step-up side)

 $$\text{Maxduty1} = \left(\frac{R8}{R7+R8} \times V_{refout} - 0.2\right) / \left(1.2 - 0.2\right) \times 100 \%$$

 Step-up side maximum duty cycle should be set equal or less than 90%. If the maximum duty cycle is set at high percentage, operation will be unstable.
TECHNICAL NOTES on EXTERNAL COMPONENTS

- External components should be set as close to this IC as possible. Especially, wiring of the capacitor connected to \(V_{IN} \) pin should be as short as possible.
- Enforce the ground wire. Large current caused by switching operation flows through GND pin. If the impedance of ground wire is high, internal voltage level of this IC might fluctuate and operation could be unstable.
- Recommended capacitance value of \(C_3 \) is equal or more than \(4.7\mu F \).
- If the spike noise of \(V_{OUT1} \) is too large, the noise is feedback from \(V_{FB1} \) pin and operation might be unstable. In that case, use the resistor ranging from \(10k\Omega \) to \(50k\Omega \) as \(R5 \) and try to reduce the noise level. In the case of \(V_{OUT2} \), use the resistor as much as \(10k\Omega \) as \(R6 \).
- Select an inductor with low D.C. current, large permissible current, and uneasy to cause magnetic saturation. If the inductance value is too small, \(I_Lx \) might be beyond the absolute maximum rating at the maximum load.
- Select a Schottky diode with fast switching speed and large enough permissible current.
- Recommended capacitance value of \(C1 \) and \(C2 \) is as much as Ceramic \(10\mu F \). In case that the operation with the system of DC/DC converter would be unstable, add a series resister less than \(0.5\Omega \) to each output capacitor or use tantalum capacitors with appropriate ESR. If you choose too large ESR, ripple noise may be forced to \(V_{FB1} \) and \(V_{FB2} \), and unstable operation may result. Use a capacitor with fully large voltage tolerance of the capacitor.
- this IC, for the test efficiency, latch release function is included. By forcing \((V_{IN}-0.3)V\) or more voltage to DTC1 pin or DTC2 pin, Latch release function works.
- Performance of the power controller with using this IC depends on external components. Each component, layout should not be beyond each absolute maximum rating such as voltage, current, and power dissipation.
1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.

2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.

3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.

4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh’s or any third party’s intellectual property rights or any other rights.

5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.

6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.

7. Anti-radiation design is not implemented in the products described in this document.

8. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

For the conservation of the global environment, Ricoh is advancing the decrease of the negative environmental impact material.

After Apr. 1, 2006, we will ship out the lead free products only. Thus, all products that will be shipped from now on comply with RoHS Directive. Basically after Apr. 1, 2012, we will ship out the Power Management ICs of the Halogen Free products only. (Ricoh Halogen Free products are also Antimony Free.)

http://www.ricoh.com/LSI/