OUTLINE

R1200x series are CMOS-based control type step-up DC/DC converter with low supply current ICs. Each of these ICs consists of a Nch MOSFET, NPN transistor, an oscillator, PWM comparator, a voltage reference unit, an error amplifier, a current limit circuit, an under voltage lockout circuit (UVLO), an over voltage protection circuit (OVP), and a soft start circuit. As the external components, an inductor, resistances or capacitors are necessary to make a constant output voltage of step-up DC/DC converter with the R1200x. At standby mode, the NPN transistor can separate the output from the input. During the situation of that, there are two versions. R1200xxxxA: the output of VOUT is generated to 0V by the low resistance (with the auto discharge function). R1200xxxxB does not generate the output of VOUT (without the auto discharge function).

The soft-start time (Typ. 1.5ms) and the maximum duty cycle (Typ. 91%) are set internally. For the protection functions of R1200x series are the current limit function of the Lx peak current, the OVP function for detection the over voltage of output and the UVLO function for protective miss-operation by the low voltage. (The threshold of OVP is selectable from 17V, 19V or 21V.)

Since the packages for these ICs are DFN1616-6, DFN(PLP)1820-6, SOT-23-6 and WLCSP-6-P1, therefore high density mounting of the ICs on boards is possible.

FEATURES

- Supply Current ... Typ. 500μA
- Standby Current ... Max. 3μA
- Input Voltage Range .. 2.3V to 5.5V
- Feedback Voltage .. 1.0V (Externally adjustable)
- Feedback Voltage Accuracy ... ±1.5%
- Temperature-Drift Coefficient of Feedback Voltage ±150ppm/°C
- Oscillator Frequency .. Typ. 1.2MHz
- Maximum Duty Cycle ... Typ. 91%
- Switch ON Resistance .. Typ. 1.35Ω
- UVLO Detector Threshold ... Typ. 2.0V
- Soft-start Time ... Typ. 1.5ms
- Lx Current Limit Protection ... Typ. 700mA
- OVP Detector Threshold .. 17V, 19V, 21V
- Switching Control ... PWM
- Built-in a rectifier NPN transistor, at standby mode, complete shutdown is possible.
- Built-in Auto discharge function A version
- Packages ... DFN1616-6, DFN(PLP)1820-6, SOT-23-6, WLCSP-6-P1
- Ceramic capacitors are recommended 1μF

APPLICATION

- OLED power supply for portable equipment
- White LED Backlight for portable equipment

* R1200Z (WLCSP-6-P1) is the limited product. As of March in 2014.
* R1200Z (WLCSP-6-P1) is the limited product. As of March in 2014.
SELECTION GUIDE

The OVP threshold voltage, auto discharge function, and the package for the ICs can be selected at the user's request.

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Package</th>
<th>Quantity per Reel</th>
<th>Pb Free</th>
<th>Halogen Free</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1200Zxxx++-E2-F</td>
<td>WLCSP-6-P1</td>
<td>5,000 pcs</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>R1200Lxxx++-TR</td>
<td>DFN1616-6</td>
<td>5,000 pcs</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>R1200Kxxx++-TR</td>
<td>DFN(PLP)1820-6</td>
<td>5,000 pcs</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>R1200Nxxx++-TR-FE</td>
<td>SOT-23-6</td>
<td>3,000 pcs</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

xxx : Designation of OVP detector threshold
(001) 17V threshold of OVP
(002) 19V threshold of OVP
(003) 21V threshold of OVP

* : The auto discharge function at off state are options as follows.
(A) with auto discharge function at off state
(B) without auto discharge function at off state

* R1200Z (WLCSP-6-P1) is the limited product. As of March in 2014.
PIN CONFIGURATIONS

- **WLCSP-6-P1**

 Top View
 ![Top View of WLCSP-6-P1](image1)

 Bottom View
 ![Bottom View of WLCSP-6-P1](image2)

- **DFN1616-6**

 Top View
 ![Top View of DFN1616-6](image3)

 Bottom View
 ![Bottom View of DFN1616-6](image4)

- **DFN(PLP)1820-6**

 Top View
 ![Top View of DFN(PLP)1820-6](image5)

 Bottom View
 ![Bottom View of DFN(PLP)1820-6](image6)

- **SOT-23-6**

 ![Top View of SOT-23-6](image7)

 ![Bottom View of SOT-23-6](image8)

 (mark side)

PIN DESCRIPTIONS

- **WLCSP-6-P1**

<table>
<thead>
<tr>
<th>Pin No</th>
<th>Symbol</th>
<th>Pin Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lx</td>
<td>Switching Pin (Open Drain Output)</td>
</tr>
<tr>
<td>2</td>
<td>V_IN</td>
<td>Power Supply Input Pin</td>
</tr>
<tr>
<td>3</td>
<td>V_FB</td>
<td>Feedback Pin</td>
</tr>
<tr>
<td>4</td>
<td>CE</td>
<td>Chip Enable Pin ("H" Active)</td>
</tr>
<tr>
<td>5</td>
<td>V_OUT</td>
<td>Output Pin</td>
</tr>
<tr>
<td>6</td>
<td>GND</td>
<td>Ground Pin</td>
</tr>
</tbody>
</table>

- **DFN1616-6, DFN(PLP)1820-6**

<table>
<thead>
<tr>
<th>Pin No</th>
<th>Symbol</th>
<th>Pin Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CE</td>
<td>Chip Enable Pin ("H" Active)</td>
</tr>
<tr>
<td>2</td>
<td>V_FB</td>
<td>Feedback Pin</td>
</tr>
<tr>
<td>3</td>
<td>Lx</td>
<td>Switching Pin (Open Drain Output)</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>Ground Pin</td>
</tr>
<tr>
<td>5</td>
<td>V_DD</td>
<td>Input Pin</td>
</tr>
<tr>
<td>6</td>
<td>V_OUT</td>
<td>Output Pin</td>
</tr>
</tbody>
</table>

* Tab is GND level. (They are connected to the reverse side of this IC.)

The tab is better to be connected to the GND, but leaving it open is also acceptable.

* R1200Z (WLCSP-6-P1) is the limited product. As of March in 2014.
SOT-23-6

<table>
<thead>
<tr>
<th>Pin No</th>
<th>Symbol</th>
<th>Pin Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CE</td>
<td>Chip Enable Pin ("H" Active)</td>
</tr>
<tr>
<td>2</td>
<td>V\textsubscript{OUT}</td>
<td>Output Pin</td>
</tr>
<tr>
<td>3</td>
<td>V\textsubscript{DD}</td>
<td>Input Pin</td>
</tr>
<tr>
<td>4</td>
<td>L\textsubscript{x}</td>
<td>Switching Pin (Open Drain Output)</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground Pin</td>
</tr>
<tr>
<td>6</td>
<td>V\textsubscript{FB}</td>
<td>Feedback Pin</td>
</tr>
</tbody>
</table>

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN</td>
<td>V\textsubscript{IN} Pin Voltage</td>
<td>−0.3 to 6.5 V</td>
<td>V</td>
</tr>
<tr>
<td>V\textsubscript{CE}</td>
<td>CE Pin Voltage</td>
<td>−0.3 to (V\textsubscript{IN}+0.3) V</td>
<td>V</td>
</tr>
<tr>
<td>V\textsubscript{FB}</td>
<td>V\textsubscript{FB} Pin Voltage</td>
<td>−0.3 to (V\textsubscript{IN}+0.3) V</td>
<td>V</td>
</tr>
<tr>
<td>V\textsubscript{OUT}</td>
<td>V\textsubscript{OUT} Pin Voltage</td>
<td>−0.3 to 25.0 V</td>
<td>V</td>
</tr>
<tr>
<td>V\textsubscript{LX}</td>
<td>L\textsubscript{x} Pin Voltage</td>
<td>−0.3 to 25.0 V</td>
<td>V</td>
</tr>
<tr>
<td>I\textsubscript{LX}</td>
<td>L\textsubscript{x} Pin Current</td>
<td>1000 mA</td>
<td>mA</td>
</tr>
<tr>
<td>P\textsubscript{D}</td>
<td>Power Dissipation (WLCSP-6-P1)*</td>
<td>633</td>
<td>mW</td>
</tr>
<tr>
<td></td>
<td>Power Dissipation (DFN1616-6)*</td>
<td>640</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power Dissipation (DFN(PLP)1820-6)*</td>
<td>880</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power Dissipation (SOT-23-6)*</td>
<td>420</td>
<td></td>
</tr>
<tr>
<td>T\textsubscript{opt}</td>
<td>Operating Temperature Range</td>
<td>−40 to 85 °C</td>
<td></td>
</tr>
<tr>
<td>T\textsubscript{stg}</td>
<td>Storage Temperature Range</td>
<td>−55 to 125 °C</td>
<td></td>
</tr>
</tbody>
</table>

*) For Power Dissipation, please refer to PACKAGE INFORMATION.

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.
ELECTRICAL CHARACTERISTICS

- **R1200x** \(T_{\text{opt}}=25^\circ\text{C} \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{IN}})</td>
<td>Operating Input Voltage</td>
<td></td>
<td>2.3</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(I_{\text{DD}})</td>
<td>Supply Current</td>
<td>(V_{\text{IN}}=5.5\text{V}, V_{\text{FB}}=0\text{V}, L_\text{x at no load})</td>
<td>0.5</td>
<td>1.0</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>(I_{\text{standby}})</td>
<td>Standby Current</td>
<td>(V_{\text{IN}}=5.5\text{V}, V_{\text{CE}}=0\text{V})</td>
<td>0</td>
<td>3.0</td>
<td>(\mu\text{A})</td>
<td></td>
</tr>
<tr>
<td>(V_{\text{UVLO1}})</td>
<td>UVLO Detector Threshold</td>
<td>(V_{\text{IN}}) falling</td>
<td>1.9</td>
<td>2.0</td>
<td>2.1</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{UVLO2}})</td>
<td>UVLO Released Voltage</td>
<td>(V_{\text{IN}}) rising</td>
<td>(V_{\text{UVLO1}}+0.10)</td>
<td>2.25</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{\text{CEH}})</td>
<td>CE Input Voltage "H"</td>
<td>(V_{\text{IN}}=5.5\text{V})</td>
<td>1.5</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{\text{CEL}})</td>
<td>CE Input Voltage "L"</td>
<td>(V_{\text{IN}}=2.3\text{V})</td>
<td>0.5</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(R_{\text{CE}})</td>
<td>CE Pull Down Resistance</td>
<td>(V_{\text{IN}}=3.6\text{V})</td>
<td>600</td>
<td>1200</td>
<td>2200</td>
<td>k(\Omega)</td>
</tr>
<tr>
<td>(V_{\text{FB}})</td>
<td>(V_{\text{FB}}) Voltage Accuracy</td>
<td>(V_{\text{IN}}=3.6\text{V})</td>
<td>0.985</td>
<td>1.0</td>
<td>1.015</td>
<td>V</td>
</tr>
<tr>
<td>(\Delta V_{\text{FB}}/\Delta T_{\text{opt}})</td>
<td>Voltage Temperature Coefficient</td>
<td>(V_{\text{IN}}=3.6\text{V}, -40^\circ\text{C} \leq T_{\text{opt}} \leq 85^\circ\text{C})</td>
<td>(\pm 150) ppm/°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{\text{FB}})</td>
<td>(V_{\text{FB}}) Input Current</td>
<td>(V_{\text{IN}}=5.5\text{V}, V_{\text{FB}}=0\text{V}) or 5.5V</td>
<td>-0.1</td>
<td>0.1</td>
<td>(\mu\text{A})</td>
<td></td>
</tr>
<tr>
<td>(t_{\text{start}})</td>
<td>Soft-start Time</td>
<td>(V_{\text{IN}}=3.6\text{V})</td>
<td>1.5</td>
<td></td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>(R_{\text{ON}})</td>
<td>Switch ON Resistance</td>
<td>(V_{\text{IN}}=3.6\text{V}, I_{\text{SW}}=100\text{mA})</td>
<td>1.35</td>
<td></td>
<td>(\Omega)</td>
<td></td>
</tr>
<tr>
<td>(I_{\text{ILXmax}})</td>
<td>Switch Leakage Current</td>
<td>(V_{\text{IN}}=3.6\text{V})</td>
<td>0</td>
<td>3.0</td>
<td>(\mu\text{A})</td>
<td></td>
</tr>
<tr>
<td>(I_{\text{ILXlim}})</td>
<td>Switch Current Limit</td>
<td>(V_{\text{IN}}=3.6\text{V})</td>
<td>400</td>
<td>700</td>
<td>1000</td>
<td>mA</td>
</tr>
<tr>
<td>(V_{\text{VNP}})</td>
<td>NPN (V_{\text{CE}}) Voltage</td>
<td>(I_{\text{NP}}=100\text{mA})</td>
<td>0.8</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(I_{\text{INPNOFF1}})</td>
<td>NPN Leakage Current 1</td>
<td>(V_{\text{OUT}}=23\text{V})</td>
<td>10</td>
<td></td>
<td>(\mu\text{A})</td>
<td></td>
</tr>
<tr>
<td>(I_{\text{INPNOFF2}})</td>
<td>NPN Leakage Current 2</td>
<td>(V_{\text{OUT}}=0\text{V}, V_{\text{ILX}}=5.5\text{V})</td>
<td>3.0</td>
<td></td>
<td>(\mu\text{A})</td>
<td></td>
</tr>
<tr>
<td>(f_{\text{osc}})</td>
<td>Oscillator Frequency</td>
<td>(V_{\text{IN}}=3.6\text{V}, V_{\text{OUT}}=V_{\text{FB}}=0\text{V})</td>
<td>1.0</td>
<td>1.2</td>
<td>1.4</td>
<td>MHz</td>
</tr>
<tr>
<td>(\text{Maxduty})</td>
<td>Maximum Duty Cycle</td>
<td>(V_{\text{IN}}=3.6\text{V}, V_{\text{OUT}}=V_{\text{FB}}=0\text{V})</td>
<td>86</td>
<td>91</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>(V_{\text{OVPI}})</td>
<td>OVP Detector Threshold</td>
<td>(V_{\text{IN}}=3.6\text{V}, V_{\text{OUT}}) rising</td>
<td>R1200x001x (16)</td>
<td>17</td>
<td>18</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R1200x002x (18)</td>
<td>19</td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R1200x003x (20)</td>
<td>21</td>
<td>22</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{OVPP2}})</td>
<td>OVP Released Voltage</td>
<td>(V_{\text{IN}}=3.6\text{V}, V_{\text{OUT}}) falling</td>
<td>(V_{\text{OVPI}}-1.1)</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{\text{IDISCHG}})</td>
<td>Discharge Current</td>
<td>(V_{\text{IN}}=3.6\text{V}, V_{\text{OUT}}=0.1\text{V})</td>
<td>R1200xxxxA</td>
<td>0.7</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>(I_{\text{IVOUT}})</td>
<td>OVP Sense Current</td>
<td>(V_{\text{IN}}=3.6\text{V}, V_{\text{OUT}}=23\text{V})</td>
<td>6.0</td>
<td></td>
<td>(\mu\text{A})</td>
<td></td>
</tr>
</tbody>
</table>

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

* R1200Z (WLCSP-6-P1) is the limited product. As of March in 2014.
TYPICAL APPLICATIONS

- **The Method of Output Voltage Setting**
 - The output voltage can be calculated with divider resistors (R1 and R2) values as the following formula:
 \[\text{Output Voltage} = V_{FB} \times \frac{R_1 + R_2}{R_1} \]
 - The total value of R1 and R2 should be equal or less than 300kΩ. Make the Vin and GND line sufficient. The large current flows through the Vin and GND line due to the switching. If this impedance (Vin and GND line) is high, the internal voltage of the IC may shift by the switching current, and the operating may become unstable. Moreover, when the built-in LX switch is turn OFF, the spike noise caused by the inductor may be generated. As a result of this, recommendation voltage rating of capacitor (C2) value is equal 1.5 times larger or more than the setting output voltage.

- **Shutdown**
 - At standby mode, the output is completely separated from the input and shutdown by the NPN transistor of internal IC. However, the leakage current is generated when the LX pin voltage is equal or more than Vin pin voltage at standby mode.
 - R1200xxxxxA (with auto discharge function): In the term of standby mode, the switch is turned ON between VOUT to GND and the VOUT capacitor is discharged.
 - R1200xxxxxB (without auto discharge function): The built-in switch for discharge does not turn on, but the OVP sense resistors between VOUT and GND exists as same as A version.
 - However, the both version (A/B) has the OVP sense resistance (4 to 5MΩ) between VOUT and GND (refer to OVP sense current (I_{VOUT}) on ELECTRICAL CHARACTERISTICS table) and the current flows through from VOUT to GND.

- **Selection of external components**
 - The recommendation of capacitor value for C1 is in the range from 1μF to 4.7μF. Connect C1 with a capacitance value between Vin and GND pin, and as close as possible to the pins.
 - Connect a capacitor in the range from 1μF to 4.7μF between VOUT and GND pins.
 - The recommendation of inductance value is in the range from 4.7μH - 22μH. Choose an inductor of which the DC resistance is small enough and the permissible current is large enough and be hard for magnetic saturation. If the inductance value is too small, at the maximum load the peak current may be large and reach the current limit of LX. (Refer to the item of the operation of the DC/DC converter and output current.)

* R1200Z (WLCSP-6-P1) is the limited product. As of March in 2014.
If the spike noise of V_{OUT} may be large, the spike noise may be picked into V_{FB} pin and make the operation unstable. In this case, use a R_3 of the resistance value in the range from $1k\Omega$ to $5k\Omega$ to reduce a noise level of V_{FB}.

The performance of power source circuits using these ICs extremely depends upon the peripheral circuits. Pay attention in the selection of the peripheral circuits. In particular, design the peripheral circuits in a way that the values such as voltage, current, and power of each component, PCB patterns and the IC do not exceed their respected rated values.
OPERATION OF STEP-UP DC/DC CONVERTER AND OUTPUT CURRENT

There are two operation modes of the step-up PWM control-DC/DC converter. That is the continuous mode and discontinuous mode by the continuousness inductor.

When the transistor turns ON, the voltage of inductor L becomes equal to V_{IN} voltage. The increase value of inductor current (i_1) will be

$$\Delta i_1 = \frac{V_{IN} \times t_{on}}{L} \quad \text{Formula 1}$$

As the step-up circuit, during the OFF time (when the transistor turns OFF) the voltage is continually supply from the power supply. The decrease value of inductor current (i_2) will be

$$\Delta i_2 = \frac{(V_{OUT} - V_{IN}) \times t_{open}}{L} \quad \text{Formula 2}$$

At the PWM control-method, the inductor current become continuously when $t_{open} = t_{off}$, the DC/DC converter operate as the continuous mode.
In the continuous mode, the variation of current of i_1 and i_2 is same at regular condition.

$$V_{IN} \times \frac{t_{on}}{L} = (V_{OUT} - V_{IN}) \times \frac{t_{off}}{L}...\text{Formula 3}$$

The duty at continuous mode will be

$$\text{duty (\%)} = \frac{t_{on}}{(t_{on} + t_{off})} = \frac{(V_{OUT} - V_{IN})}{V_{OUT}}...\text{Formula 4}$$

The average value of inductor current (i_1) when $t_{open}=t_{off}$ will be

$$i_1 \text{ (Ave.)} = \frac{V_{IN} \times t_{on}}{(2 \times L)}...\text{Formula 5}$$

If the input power is equal to the output power, it becomes the continuous mode if the I_{OUT} value is larger than the value will be calculated by following formula.

$$I_{OUT} = \frac{V_{IN}^2}{V_{OUT}} \times \frac{t_{on}}{(2 \times L \times V_{OUT})}...\text{Formula 6}$$

The peak current (I_{max}) of inductor will be

$$I_{max} = I_{OUT} \times \frac{V_{OUT}}{V_{IN}} + \frac{V_{IN} \times t_{on}}{(2 \times L)}$$

$$I_{max} = I_{OUT} \times \frac{V_{OUT}}{V_{IN}} + \frac{V_{IN} \times T \times (V_{OUT} - V_{IN})}{(2 \times L \times V_{OUT})} ..\text{Formula 7}$$

The peak current value is larger than the I_{OUT} value. In case of this, selecting the condition of the input and the output and the external components by considering of I_{max} value.

The explanation above is based on the ideal calculation, and the loss caused by $L\times$ switch and the external components are not included.

The actual maximum output current will be between 50% and 80% by the above calculations. Especially, when the IL is large or V_{IN} is low, the loss of V_{IN} is generated with on resistance of the switch.
TYPICAL CHARACTERISTICS

1) Output Voltage vs. Output Current ($L=22\mu H$)

- **Set VOUT=5V**
 - $V_{IN}=2.8V$
 - $V_{IN}=3.6V$
 - $V_{IN}=4.2V$
 - $V_{IN}=5.0V$

- **Set VOUT=9V**
 - $V_{IN}=2.8V$
 - $V_{IN}=3.6V$
 - $V_{IN}=4.2V$
 - $V_{IN}=5.0V$

- **Set VOUT=15V**
 - $V_{IN}=2.8V$
 - $V_{IN}=3.6V$
 - $V_{IN}=4.2V$
 - $V_{IN}=5.0V$

- **Set VOUT=18V**
 - $V_{IN}=2.8V$
 - $V_{IN}=3.6V$
 - $V_{IN}=4.2V$
 - $V_{IN}=5.0V$

2) Efficiency vs. Output Current

- **$V_{IN}=3.6V$ Set VOUT=15V**
 - LQH32CN220K53 (22μH)
 - LQH32CN100K53 (10μH)
 - LQH32CN4R7M53 (4.7μH)

- **$V_{IN}=3.6V$ Set VOUT=15V**
 - VLF3010AT-100 (10μH)
 - VLS252010T-100 (10μH)
 - LQH2MCN100K12 (10μH)

* R1200Z (WLCSP-6-P1) is the limited product. As of March in 2014.
3) OVP Sense Current vs. Temperature

4) Supply Current vs. Temperature
5) CE Pulldown Resistance vs. Temperature

6) CE Input Voltage "L" vs. Temperature

7) CE Input Voltage "H" vs. Temperature

8) NPN Vce Voltage vs. Temperature

9) Vfb Voltage vs. Temperature

10) UVLO Detect / Released Voltage vs. Temperature

* R1200Z (WLCSP-6-P1) is the limited product. As of March in 2014.
11) Oscillator Frequency vs. Temperature

12) Maxduty vs. Temperature

13) OVP Detect / Released Voltage vs. Temperature

14) Soft-start Time vs. Temperature

15) VOUT Discharge Current vs. Temperature
16) Lx Limit Current vs. Temperature

R1200x

17) Switch ON Resistance vs. Temperature

R1200x

18) Load Transient Response (VIN=3.6V, IOUT=5mA→25mA, tr=tf=0.5μs)

R1200x

19) Start-up Waveform (VIN=3.6V, IOUT=20mA)

R1200x001A

R1200x003A
20) Shut-down Waveform ($V_{IN}=3.6V$, $I_{OUT}=20mA$)

R1200x001A

Set $V_{OUT}=5.0V$

R1200x003A

Set $V_{OUT}=15.0V$

21) OVP Waveform ($V_{FB}=0V$)

R1200x001A

* R1200Z (WLCSP-6-P1) is the limited product. As of March in 2014.
1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.

2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.

3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.

4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh’s or any third party’s intellectual property rights or any other rights.

5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.

6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, firecontainment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.

7. Anti-radiation design is not implemented in the products described in this document.

8. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

For the conservation of the global environment, Ricoh is advancing the decrease of the negative environmental impact material.
After Apr. 1, 2006, we will ship out the lead free products only. Thus, all products that will be shipped from now on comply with RoHS Directive.
Basically after Apr. 1, 2012, we will ship out the Power Management ICs of the Halogen Free products only. (Ricoh Halogen Free products are also Antimony Free.)