OUTLINE

The RP503x Series are low supply current CMOS-based 600mA* step-down DC/DC Converters with synchronous rectifier. Each of these ICs consists of an oscillator, a switching control circuit, a reference voltage unit, an error amplifier, a soft-start circuit, UVLO circuit, a latch protection circuit, switching transistors, and so on. A low ripple, high efficiency step-down DC/DC converter can be easily composed of this IC with only an inductor and capacitors.

In terms of the output voltage, since the feedback resistances are built-in, the voltage is fixed internally. 0.1V step output can be set by laser-trim and 1.5% or 18mV tolerance depending on the output voltage is guaranteed. RP503x is PWM/VFM auto switching control in which mode automatically switches from PWM mode to high-efficiency VFM mode in low output current. The efficiency in low output current (VFM mode) improved compared with existing products.

As protection circuits, the current limit circuit which limits peak current of Lx at each clock cycle, and the latch type protection circuit which works if the term of the over-current condition keeps on a certain time exist. The latch-type protection circuit works to latch an internal driver with keeping it disable. To release the condition of the protection, after disabling this IC with a chip enable circuit, enable it again, or restart this IC with power-on or make the supply voltage at UVLO detector threshold level or lower than UVLO.

Since packages are WLCSP-6-P2, DFN1616-6, SOT-23-5, high density mounting on boards is possible.

This is an approximate value, because output current depends on conditions and external parts.

FEATURES

- **Supply Current** ... Typ. 20μA (at VFM mode, at no load)
- **Standby Current** .. Max. 5μA
- **Input Voltage Range** .. 2.5V to 5.5V (Absolute maximum rating; 6.5V)
- **Output Voltage Range** .. 0.8V to 2.5V (0.1V step)
- **Output Voltage Accuracy** .. ±1.5% (V_{OUT}≥1.2V), ±18mV (V_{OUT}<1.2V)
- **Oscillator Frequency** ... Typ. 2.0MHz
- **Oscillator Maximum Duty Cycle** ... Min. 100%
- **Built-in Driver ON Resistance** ... Typ. Pch. 0.34Ω, Nch. 0.43Ω (VIN=3.6V)
- **UVLO Detector Threshold** .. Typ. 2.2V
- **Soft Start Time** ... Typ. 0.15ms
- **Lx Current Limit** ... Typ. 800mA
- **Latch type Protection Circuit** ... Typ. 1.5ms
- **Two choices of Switching Mode** .. Automatic PWM/VFM mode change
- **Packages** .. DFN1616-6, WLCSP-6-P2, SOT-23-5

APPLICATIONS

- Power source for battery-powered equipment.
- Power source for hand-held communication equipment, cameras, VCRs, camcorders.
- Power source for HDD, portable equipment.

RP503Z (WLCSP-6-P2) is the limited product. As of March in 2014.
BLOCK DIAGRAMS

RP503Zxx1A
RP503Lxx1A

RP503Zxx2A
RP503Lxx2A

* RP503Z (WLCSP-6-P2) is the limited product. As of March in 2014.
* RP503Z (WLCSP-6-P2) is the limited product. As of March in 2014.
RP503x

SELECTION GUIDE

The output voltage, auto discharge function, and package for the ICs can be selected at the user’s request.

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Package</th>
<th>Quantity per Reel</th>
<th>Pb Free</th>
<th>Halogen Free</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP503Zxx*A-E2-F</td>
<td>WLCSP-6-P2</td>
<td>5,000 pcs</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RP503Lxx*A-TR</td>
<td>DFN1616-6</td>
<td>5,000 pcs</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RP503Nxx*A-TR-FE</td>
<td>SOT-23-5</td>
<td>3,000 pcs</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

xx: The output voltage can be designated in the range from 0.8V(08) to 2.5V(25) in 0.1V steps*. (For other voltages, please refer to MARK INFORMATIONS.)

*: The auto discharge function at off state are options as follows.
(1) without auto discharge function at off state
(2) with auto discharge function at off state

*) 0.05V step is also available as a custom code.

* RP503Z (WLCSP-6-P2) is the limited product. As of March in 2014.
PIN CONFIGURATIONS

- **WLCSP-6-P2**

 - Mark Side
 - Bump Side

 ![Mark Side](image1)
 ![Bump Side](image2)

- **DFN1616-6**

 - Top View
 - Bottom View

 ![Top View](image3)
 ![Bottom View](image4)

- **SOT-23-5**

 ![Diagram](image5)

PIN DESCRIPTIONS

- **WLCSP-6-P2**

<table>
<thead>
<tr>
<th>Pin No</th>
<th>Symbol</th>
<th>Pin Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V\text{OUT}</td>
<td>Output Pin</td>
</tr>
<tr>
<td>2</td>
<td>PGND</td>
<td>Ground Pin</td>
</tr>
<tr>
<td>3</td>
<td>Lx</td>
<td>Lx Switching Pin</td>
</tr>
<tr>
<td>4</td>
<td>V\text{IN}</td>
<td>Input Pin</td>
</tr>
<tr>
<td>5</td>
<td>AGND</td>
<td>Ground Pin</td>
</tr>
<tr>
<td>6</td>
<td>CE</td>
<td>Chip Enable Pin ("H" Active)</td>
</tr>
</tbody>
</table>

- **DFN1616-6**

<table>
<thead>
<tr>
<th>Pin No</th>
<th>Symbol</th>
<th>Pin Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CE</td>
<td>Chip Enable Pin ("H" Active)</td>
</tr>
<tr>
<td>2</td>
<td>AGND</td>
<td>Ground Pin</td>
</tr>
<tr>
<td>3</td>
<td>V\text{IN}</td>
<td>Input Pin</td>
</tr>
<tr>
<td>4</td>
<td>Lx</td>
<td>Lx Switching Pin</td>
</tr>
<tr>
<td>5</td>
<td>PGND</td>
<td>Ground Pin</td>
</tr>
<tr>
<td>6</td>
<td>V\text{OUT}</td>
<td>Output Pin</td>
</tr>
</tbody>
</table>

- **SOT-23-5**

<table>
<thead>
<tr>
<th>Pin No</th>
<th>Symbol</th>
<th>Pin Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V\text{OUT}</td>
<td>Output Pin</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground Pin</td>
</tr>
<tr>
<td>3</td>
<td>Lx</td>
<td>Lx Switching Pin</td>
</tr>
<tr>
<td>4</td>
<td>V\text{IN}</td>
<td>Input Pin</td>
</tr>
<tr>
<td>5</td>
<td>CE</td>
<td>Chip Enable Pin ("H" Active)</td>
</tr>
</tbody>
</table>

*) Tab is GND level. (They are connected to the reverse side of this IC.)

The tab is better to be connected to the GND, but leaving it open is also acceptable.

* RP503Z (WLCSP-6-P2) is the limited product. As of March in 2014.
ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN</td>
<td>Input Voltage</td>
<td>−0.3 to 6.5 V</td>
<td>V</td>
</tr>
<tr>
<td>VLx</td>
<td>Lx pin Voltage</td>
<td>−0.3 to VIN+0.3 V</td>
<td>V</td>
</tr>
<tr>
<td>VCE</td>
<td>CE Pin Input Voltage</td>
<td>−0.3 to 6.5 V</td>
<td>V</td>
</tr>
<tr>
<td>VOUT</td>
<td>Output Voltage</td>
<td>−0.3 to 6.5 V</td>
<td>V</td>
</tr>
<tr>
<td>ILx</td>
<td>Lx Pin Output Current</td>
<td>800 mA</td>
<td></td>
</tr>
<tr>
<td>PD</td>
<td>Power Dissipation (WLCSP-6-P2) *</td>
<td>650 mW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power Dissipation (DFN1616-6) *</td>
<td>640 mW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power Dissipation (SOT-23-5) *</td>
<td>420 mW</td>
<td></td>
</tr>
<tr>
<td>T_{opt}</td>
<td>Operating Temperature Range</td>
<td>−40 to 85 °C</td>
<td></td>
</tr>
<tr>
<td>T_{stg}</td>
<td>Storage Temperature Range</td>
<td>−55 to 125 °C</td>
<td></td>
</tr>
</tbody>
</table>

* For Power Dissipation, please refer to PACKAGE INFORMATION.

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

* RP503Z (WLCSP-6-P2) is the limited product. As of March in 2014.
ELECTRICAL CHARACTERISTICS

RP503x

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>Operating Input Voltage</td>
<td>$V_{IN}=V_{CE}=3.6V$</td>
<td>2.5</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{OUT}</td>
<td>Output Voltage</td>
<td>$V_{IN}=V_{CE}=3.6V$, $V_{OUT} \geq 1.2V$</td>
<td>0.985</td>
<td>1.015</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$\Delta V_{OUT}/\Delta T_{opt}$</td>
<td>Output Voltage Temperature Coefficient</td>
<td>$-40^\circ C \leq T_{opt} \leq 85^\circ C$</td>
<td>± 100</td>
<td>ppm/°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{osc}</td>
<td>Oscillator Frequency</td>
<td>$V_{IN}=V_{CE}=V_{OUT}+1.7V$</td>
<td>1.7</td>
<td>2.0</td>
<td>2.3</td>
<td>MHz</td>
</tr>
<tr>
<td>I_{DD}</td>
<td>Supply Current</td>
<td>$V_{IN}=V_{CE}=5.5V$, $V_{OUT}=5.5V$</td>
<td>17</td>
<td>20</td>
<td>23</td>
<td>μA</td>
</tr>
<tr>
<td>$I_{standby}$</td>
<td>Standby Current</td>
<td>$V_{IN}=5.5V$, $V_{CE}=0V$</td>
<td>0</td>
<td>5</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>R_{ONP}</td>
<td>ON Resistance of Pch Tr.</td>
<td>$V_{IN}=3.6V$, $I_{LX}=-100mA$</td>
<td>0.34</td>
<td>Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{ONN}</td>
<td>ON Resistance of Nch Tr.</td>
<td>$V_{IN}=3.6V$, $I_{LX}=-100mA$</td>
<td>0.43</td>
<td>Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{LXleakH}$</td>
<td>Lx Leakage Current "H"</td>
<td>$V_{IN}=5.5V$, $V_{CE}=0V$</td>
<td>-1</td>
<td>0</td>
<td>5</td>
<td>μA</td>
</tr>
<tr>
<td>$I_{LXleakL}$</td>
<td>Lx Leakage Current "L"</td>
<td>$V_{IN}=5.5V$, $V_{CE}=0V$</td>
<td>-5</td>
<td>0</td>
<td>1</td>
<td>μA</td>
</tr>
<tr>
<td>I_{VOUTH}</td>
<td>V_{OUT} "H" Input Current</td>
<td>$V_{IN}=V_{OUT}=5.5V$, $V_{CE}=0V$</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>μA</td>
</tr>
<tr>
<td>I_{VOUTL}</td>
<td>V_{OUT} "L" Input Current</td>
<td>$V_{IN}=5.5V$, $V_{CE}=V_{OUT}=0V$</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>μA</td>
</tr>
<tr>
<td>I_{CEH}</td>
<td>CE "H" Input Current</td>
<td>$V_{IN}=V_{CE}=5.5V$</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>μA</td>
</tr>
<tr>
<td>I_{CEL}</td>
<td>CE "L" Input Current</td>
<td>$V_{IN}=5.5V$, $V_{CE}=0V$</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>μA</td>
</tr>
<tr>
<td>V_{CEH}</td>
<td>CE Input Voltage "H"</td>
<td>$V_{IN}=5.5V$</td>
<td>1.0</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{CEL}</td>
<td>CE Input Voltage "L"</td>
<td>$V_{IN}=2.5V$</td>
<td>0.4</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{CE}</td>
<td>CE Input Voltage "H"</td>
<td>$V_{IN}=5.5V$</td>
<td>1.0</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{LXlim}</td>
<td>Lx Current Limit</td>
<td>$V_{IN}=V_{CE}=3.6V$</td>
<td>600</td>
<td>800</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>t_{prot}</td>
<td>Protection Delay Time</td>
<td>$V_{IN}=V_{CE}=3.6V$</td>
<td>0.5</td>
<td>1.5</td>
<td>5.0</td>
<td>ms</td>
</tr>
<tr>
<td>V_{UVLO1}</td>
<td>UVLO Detector Threshold</td>
<td>$V_{IN}=V_{CE}$</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>V</td>
</tr>
<tr>
<td>V_{UVLO2}</td>
<td>UVLO Released Voltage</td>
<td>$V_{IN}=V_{CE}$</td>
<td>2.2</td>
<td>2.3</td>
<td>2.4</td>
<td>V</td>
</tr>
<tr>
<td>R_{LOW}</td>
<td>Low Output Nch Tr. ON Resistance (RP503xx2A only)</td>
<td>$V_{IN}=3.6V$, $V_{CE}=0V$</td>
<td>30</td>
<td>Ω</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test circuit is "OPEN LOOP" and AGND=PGND=0V unless otherwise noted.

*) The time until the 90% voltage of setting voltage.

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

* RP503Z (WLCSP-6-P2) is the limited product. As of March in 2014.
TEST CIRCUITS

Output Voltage

Oscillator Frequency

Supply Current 1,2

Standby Current

CE "H"/"L" Input Current

Vout "H"/"L" Current

* RP503Z (WLCSP-6-P2) is the limited product. As of March in 2014.
* RP503Z (WLCSP-6-P2) is the limited product. As of March in 2014.

RP503x

Lx Leakage Current

CE Input Voltage

Pch • Nch transistor ON resistance / Output Delay for Protection / Lx Current limit

Soft-start Time

UVLO Detector Threshold • Released Voltage
TYPICAL APPLICATION

![TYPICAL APPLICATION Diagram](image)

Symbol Parts Recommendation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parts Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(_{\text{IN}})</td>
<td>4.7(\mu)F Ceramic</td>
</tr>
<tr>
<td>C(_{\text{OUT}})</td>
<td>10(\mu)F Ceramic</td>
</tr>
<tr>
<td>L</td>
<td>4.7(\mu)H SMD inductor</td>
</tr>
</tbody>
</table>

- If \(V_{\text{IN}}\) is in the range of 3.0V to 4.5V and \(V_{\text{OUT}}\) is 1.2V, the following small-sized components can be used.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parts Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>2.2(\mu)H SMD inductor</td>
</tr>
<tr>
<td>4.7(\mu)H SMD inductor</td>
<td>BRFL2518T4R7M (TAIYO YUDEN)</td>
</tr>
<tr>
<td>2.2(\mu)H Multilayer chip inductor</td>
<td>MIPS2520D2R2 (FDK)</td>
</tr>
<tr>
<td>C(_{\text{IN}})</td>
<td>2.2(\mu)F×2 Ceramic</td>
</tr>
</tbody>
</table>

- If \(V_{\text{IN}}\) is in the range of 3.0V to 4.5V, \(V_{\text{OUT}}\) is 1.2V, and \(I_{\text{OUT}}\) is lower than 500mA, the following small and low-profile components can be used.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parts Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(_{\text{IN}})</td>
<td>4.7(\mu)F Ceramic</td>
</tr>
<tr>
<td>C(_{\text{OUT}})</td>
<td>10(\mu)F Ceramic</td>
</tr>
<tr>
<td>L</td>
<td>2.2(\mu)H SMD inductor</td>
</tr>
</tbody>
</table>

* RP503Z (WLCSP-6-P2) is the limited product. As of March in 2014.
TECHNICAL NOTES

When using these ICs, consider the following points:

- Set the same level as AGND and PGND.
- Set external components such as an inductor, \(C_{IN} \), \(C_{OUT} \) as close as possible to the IC, in particular, minimize the wiring to \(V_{IN} \) pin and PGND pin. Reinforce the \(V_{IN} \), PGND, and \(V_{OUT} \) lines sufficiently. Large switching current may flow in these lines. If the impedance of \(V_{IN} \) and PGND lines is too large, the internal voltage level in this IC may shift caused by the switching current, and the operation might be unstable. The wiring between \(V_{OUT} \) and load and between \(L \) and \(V_{OUT} \) should be separated.
- Use external ceramic capacitors with good frequency characteristics and ESR. \(C_{IN} \) between \(V_{IN} \) and GND with a capacity of 4.7\(\mu \)F or more and \(C_{OUT} \) with a capacity of 10\(\mu \)F or more are recommended.
- Choose an inductor with inductance range from 2.2\(\mu \)H to 4.7\(\mu \)H. The phase compensation has been made by these values with output capacitors. The recommendation characteristics of the inductor are low DC resistance, large enough permissible current, and strong against the magnetic saturation. Inductance value may shift depending on an inductor. If the inductance value at an actual load current is low, \(L_{x} \) peak current may increase and may overlap the \(L_{x} \) current limit. As a result, over current protection may work.
- Over current protection circuit may be affected by self-heating and heat radiation environment.

*The performance of power source circuits using these ICs extremely depends upon the peripheral circuits. Pay attention in the selection of the peripheral circuits. In particular, design the peripheral circuits in a way that the values such as voltage, current, and power of each component, PCB patterns and the IC do not exceed their respected rated values. (such as the voltage, current, and power)
Operation of step-down DC/DC converter and Output Current

The DC/DC converter charges energy in the inductor when Lx transistor is ON, and discharges the energy from the inductor when Lx transistor is OFF and controls with less energy loss, so that a lower output voltage than the input voltage is obtained. The operation will be explained with reference to the following diagrams:

- **Step 1**: Pch Tr. turns on and current IL (=i1) flows, and energy is charged into CL. At this moment, IL increases from ILmin (=0) to reach ILmax in proportion to the on-time period (ton) of Pch Tr.
- **Step 2**: When Pch Tr. turns off, Synchronous rectifier Nch Tr. turns on in order that L maintains IL at ILmax, and current IL (=i2) flows.
- **Step 3**: IL (=i2) decreases gradually and reaches IL=ILmin=0 after a time period of topen, and Nch Tr. turns off.

Provided that in the continuous mode, next cycle starts before IL becomes to 0 because toff time is not enough. In this case, IL value increases from this ILmin (>0).

In the case of PWM control system, the output voltage is maintained by controlling the on-time period (ton), with the oscillator frequency (fosc) being maintained constant.

The maximum value (ILmax) and the minimum value (ILmin) of the current flowing through the inductor are the same as those when Pch Tr. turns on and off.

The difference between ILmax and ILmin, which is represented by ΔI:

$$\Delta I = IL_{\text{max}} - IL_{\text{min}} = \frac{V_{\text{OUT}} \times topen}{L} = \frac{(V_{\text{IN}} - V_{\text{OUT}}) \times ton}{L} \quad \text{.. Equation 1}$$

wherein,

$$T = 1 / f_{\text{osc}} = \frac{ton + toff}{ton}$$

$$\text{duty (\%)} = \frac{ton}{T} \times 100 = \frac{ton \times f_{\text{osc}} \times 100}{toff}$$

In Equation 1, $V_{\text{OUT}} \times topen / L$ and $(V_{\text{IN}} - V_{\text{OUT}}) \times ton / L$ respectively show the change of the current at "ON", and the change of the current at "OFF".

* RP503Z (WLCSP-6-P2) is the limited product. As of March in 2014.
Discontinuous mode and Continuous mode

When the output current (I_{OUT}) is relatively small, $t_{open} < t_{off}$ as illustrated in the above diagram. In this case, the energy is charged in the inductor during the time period of t_{on} and is discharged in its entirety during the time period of t_{off}, therefore I_L_{min} becomes to zero ($I_L_{min}=0$). When I_{OUT} is gradually increased, eventually, t_{open} becomes to t_{off} ($t_{open}=t_{off}$), and when I_{OUT} is further increased, I_L_{min} becomes larger than zero ($I_L_{min}>0$). The former mode is referred to as the discontinuous mode and the latter mode is referred to as continuous mode.

Discontinuous mode

Continuous mode

In the continuous mode, when Equation 1 is solved for t_{on} and assumed that the solution is t_{onc},

$$t_{onc} = T \times \frac{V_{OUT}}{V_{IN}}$$

Equation 2

When $t_{on} < t_{onc}$, the mode is the discontinuous mode, and when $t_{on} = t_{onc}$, the mode is the continuous mode.
Output Current and selection of External components

The relation between the output current and external components is as follows:

(Wherein, Ripple Current p-p value is described as I_{RP}, ON resistance of Pch Tr. and Nch Tr. of Lx are respectively described as R_{ONP} and R_{ONN}, and the DC resistor of the inductor is described as R_L.)

When Pch Tr. of Lx is ON:

$$V_{IN} = V_{OUT} + (R_{ONP} + R_L) \times I_{OUT} + L \times I_{RP} / \tau_{on}$$

..Equation 3

When Pch Tr. of Lx is "OFF" (Nch Tr. is "ON"):

$$L \times I_{RP} / \tau_{off} = R_{ONN} \times I_{OUT} + V_{OUT} + R_L \times I_{OUT}$$

..Equation 4

Put Equation 4 to Equation 3 and solve for ON duty of Pch transistor, $D_{ON} = \tau_{on} / (\tau_{off} + \tau_{on})$,

$$D_{ON} = (V_{OUT} + R_{ONN} \times I_{OUT} + R_L \times I_{OUT}) / (V_{IN} + R_{ONN} \times I_{OUT} - R_{ONP} \times I_{OUT})$$

..Equation 5

Ripple Current is as follows:

$$I_{RP} = (V_{IN} - V_{OUT} - R_{ONP} \times I_{OUT} - R_L \times I_{OUT}) \times D_{ON} / f_{osc} / L$$

..Equation 6

wherein, peak current that flows through L, and Lx Tr. is as follows:

$$I_{Lx_{max}} = I_{OUT} + I_{RP} / 2$$

..Equation 7

*Consider $I_{Lx_{max}}$, condition of input and output and select external components.

*The above explanation is directed to the calculation in an ideal case in continuous mode.
TIMING CHART

(1) Soft Start Time

- In the case of starting this IC with CE

 In the case of starting this IC with CE, the operation can be as in the timing chart below. When the voltage of CE pin (V_{CE}) is beyond the threshold level, the operation of the IC starts. The threshold voltage of CE pin is in between CE "H" input voltage (V_{CEH}) and CE "L" input voltage (V_{CEL}) described in the electrical characteristics table. Soft-start circuit operates, and after the certain time, the reference voltage inside the IC (V_{REF}) is rising gradually up to the constant value.

<table>
<thead>
<tr>
<th>CE Pin Input Voltage (V_{CE})</th>
<th>IC Internal Voltage Reference (V_{REF})</th>
<th>Lx Voltage (V_{Lx})</th>
<th>Output Voltage (V_{OUT})</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CEH} Threshold Level</td>
<td>Soft-start Circuit operating</td>
<td>PWM mode operating during the Soft-start Time</td>
<td>Depending on Power supply, Load Current, External Components</td>
</tr>
<tr>
<td>V_{CEL}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Soft-start time is the time interval from soft start circuit starting point to the reference voltage level reaching point up to this constant level.

- Soft start time is not always equal to the turn-on speed of DC/DC converter. The power supply capacity for this IC, load current, inductance and capacitance values affect the turn-on speed.

- In the case of starting with power supply

 In the case of starting with power supply, when the input voltage (V_{in}) is larger than UVLO released voltage (V_{UVLO2}), soft start circuit operates, and after that, the same explanation above is applied to the operation. Soft-start time is the time interval from soft start circuit starting point to the reference voltage level reaching point up to this constant level.

Input Voltage (V_{IN})

IC Internal Voltage Reference (V_{REF})

Lx Voltage (V_{Lx})

Output Voltage (V_{OUT})

Set V_{OUT}

Set V_{OUT}

PWM mode operating during the Soft-start Time

Depending on Power supply, Load Current, External Components

*Turn-on speed is affected by next conditions;
(a) Input Voltage (V_{in}) rising speed depending on the power supplier to the IC and input capacitor C_{IN}.
(b) Output Capacitor C_{OUT} value and load current value.
(2) Under Voltage Lockout (UVLO) Circuit

The step-down DC/DC converter stops and ON duty becomes 100%, if input voltage \((V_{IN}) \) becomes less than the set output voltage \((Set\ V_{OUT}) \), the output voltage \((V_{OUT}) \) gradually drops according to the input voltage \((V_{IN}) \). If the input voltage drops more and becomes less than UVLO detector threshold \((V_{UVLO1}) \), the under voltage lockout circuit (UVLO) operates, the IC internal reference voltage \((V_{REF}) \) stops, switching transistors turn off and the output voltage drops according to the load and output capacitor \(C_{OUT} \) value.

To restart the normal operation, the input voltage \((V_{IN}) \) must be more than the UVLO released voltage \((V_{UVLO2}) \).

The timing chart below describes the operation with varying the input voltage \((V_{IN}) \).

*Actually, the waveform of \(V_{OUT} \) at UVLO working and releasing varies depending on the initial voltage of \(C_{OUT} \) and load current situation."
(3) Over Current Protection Circuit, Latch Type Protection Circuit

Over current protection circuit supervises the coil peak current (the current flowing Pch transistor) at each switching cycle, and if the current beyond the Lx current limit (I_{LXlim}), Pch transistor is turned off. The Lx current limit of RP503x is Typ. 800mA.

Further, if the over current status continues equal or longer than protection delay time, a built-in driver is latched in the OFF state and the operation of DC/DC converter stops.

*Lx current limit (I_{LXlim}) and protection delay time (t_{prot}) is affected by self-heating and ambient environment. If the output is short and the input voltage (V_{IN}) is drastically dropped or becomes unstable, the protection operation and delay time may vary.

![Diagram](attachment:image.png)

To release the condition of latch type protection, restart this IC by inputting "L" signal to CE pin, or restart this IC with power-on or make the supply voltage lower than UVLO detector threshold (V_{UVLO1}) level.

The timing chart shown below describes the changing process of input voltage rising, stable operating, operating with large current, reset with CE pin, stable operating, input voltage falling, input voltage recovering, and stable operating.

If too large current flows through the circuit because of short or other reasons, after the delay time of latch type protection a built-in driver is latched in the OFF state and V_{LX} signal will be "L", then output will turn off. At the point (1), release the latch type protection is realized with CE reset as changed CE signal from "L" to "H". At the point (2), release the latch type protection is realized with UVLO reset as make the supply voltage lower than UVLO detector threshold (V_{UVLO1}) level.
TYPICAL CHARACTERISTICS

1) Output Voltage vs. Output Current

RP503x08xA (VFM MODE)

- **Output Voltage V**
- **Output Current IOUT (mA)**

RP503x08xA (PWM MODE)

- **Output Voltage V**
- **Output Current IOUT (mA)**

RP503x12xA (VFM MODE)

- **Output Voltage V**
- **Output Current IOUT (mA)**

RP503x12xA (PWM MODE)

- **Output Voltage V**
- **Output Current IOUT (mA)**

RP503x18xA (VFM MODE)

- **Output Voltage V**
- **Output Current IOUT (mA)**

RP503x18xA (PWM MODE)

- **Output Voltage V**
- **Output Current IOUT (mA)**

RP503Z (WLCSP-6-P2) is the limited product. As of March in 2014.
RP503Z (WLCSP-6-P2) is the limited product. As of March in 2014.

2) Output Voltage vs. Input Voltage

RP503x08xA

RP503x12xA

RP503x18xA

RP503x25xA
3) Output Voltage vs. Temperature

RP503x15xA

![Graph showing Output Voltage vs. Temperature]

4) Efficiency vs. Output Current

RP503x08xA

![Graph showing Efficiency vs. Output Current]

RP503x12xA

![Graph showing Efficiency vs. Output Current]

RP503x15xA

![Graph showing Efficiency vs. Output Current]

RP503x18xA

![Graph showing Efficiency vs. Output Current]

* RP503Z (WLCSP-6-P2) is the limited product. As of March in 2014.
* RP503Z (WLCSP-6-P2) is the limited product. As of March in 2014.
RP503x

* RP503Z (WLCSP-6-P2) is the limited product. As of March in 2014.
8) Oscillator Frequency vs. Temperature

9) Oscillator Frequency vs. Input Voltage

10) Soft-start Time vs. Temperature

11) UVLO Detector Threshold / Released Voltage vs. Temperature
12) CE Input Voltage vs. Temperature

CE”H” Input Voltage

RP503x15xA

CE”L” Input Voltage

RP503x15xA

13) Lx Current Limit vs. Temperature

RP503x15xA

14) Nch Tr. ON Resistance vs. Temperature

15) Pch Tr. ON Resistance vs. Temperature

16) Turn on speed with CE pin (\(V_{IN}=3.6\,\text{V}, T_{opt}=25^\circ\text{C}\))

RP503Z (WLCSP-6-P2) is the limited product. As of March in 2014.
17) Load Transient Response \((V_{IN}=3.6\,\text{V}, \, T_{opt}=25^\circ\text{C})\)

RP503x25xA

- **ROUT=1kΩ**
- CE Input Voltage
- Output Voltage

RP503x25xA

- **ROUT=130Ω**
- CE Input Voltage
- Output Voltage

RP503x08xA

- **Output Current 1mA-->300mA**
- Output Voltage

RP503x08xA

- **Output Current 300mA-->1mA**
- Output Voltage

RP503x08xA

- **Output Current 200mA-->500mA**
- Output Voltage

RP503x08xA

- **Output Current 500mA-->200mA**
- Output Voltage

RP503Z (WLCSP-6-P2) is the limited product. As of March in 2014.
RP503Z (WLCSP-6-P2) is the limited product. As of March in 2014.
RP503x

* RP503Z (WLCSP-6-P2) is the limited product. As of March in 2014.
1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.

2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.

3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.

4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh’s or any third party’s intellectual property rights or any other rights.

5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.

6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, firecontainment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.

7. Anti-radiation design is not implemented in the products described in this document.

8. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

For the conservation of the global environment, Ricoh is advancing the decrease of the negative environmental impact material.

After Apr. 1, 2006, we will ship out the lead free products only. Thus, all products that will be shipped from now on comply with RoHS Directive. Basically after Apr. 1, 2012, we will ship out the Power Management ICs of the Halogen Free products only. (Ricoh Halogen Free products are also Antimony Free.)